跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/07/30 08:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃詳閔
研究生(外文):Huang, Hsiangmin
論文名稱:應用於室溫檢測之表面聲波一氧化氮感測器
論文名稱(外文):A Nitric Oxide Gas Sensor Based On Surface Acoustic Wave Device For Room Temperature Operation
指導教授:沈季燕
指導教授(外文):Shen, Chiyen
口試委員:鄭湘原王詩涵沈季燕
口試委員(外文):Jeng, SyangywanWang, ShihhanShen, Chiyen
口試日期:2012-06-25
學位類別:碩士
校院名稱:義守大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:60
中文關鍵詞:表面聲波聚苯胺二氧化錫一氧化氮
外文關鍵詞:Surface Acoustic WavePolyanilineTin OxideNitric Oxide
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1123
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
早期檢測呼吸疾病,都需要經由繁複的醫療儀器系統來進行檢測並且耗時。因此,本論文主要是使用聚苯胺/二氧化錫(Polyaniline, PANI / Tin oxide, SnO2)之複合薄膜為塗層,研製可於室溫下操作並且快速偵測ppb濃度之一氧化氮氣體感測器。本論文將偵測濃度10~350 ppb的一氧化氮,並分析其感測特性,包括靈敏性(Sensitivity)、再現性(Repeatability)與回復性(Reversibility)。在偵測低濃度的一氧化氮時,由於感測機制受到質量負載、彈性效應與聲電效應的影響,響應隨著一氧化氮減少而呈現由正變負的結果。另外,藉由加入不同的混合物來進行催化,增強聚苯胺/二氧化錫之複合薄膜對於一氧化氮的感測效益。最後,本論文還探討二氧化氮和二氧化碳對此聚苯胺/二氧化錫之複合薄膜的干擾現象,並且由結果得知,二氧化氮和二氧化碳所造成的干擾是可以忽略不計。
It could use a complex medical system to detect respiratory diseases in the early stage, but it is time consuming. In this work, the surface acoustic wave (SAW) devices coated with the polyaniline/tin oxide composite thin film were developed to detect nitrogen oxide (NO) in the ppb range at room temperature. These developed SAW sensor could detect nitric oxide in a range of 10-350ppb. The sensing characteristics, including sensitivity, repeatability and reversibility, were studied. Based on the sensing mechanism, the mass loading, the elastic effect and the acoustoelectric effect were contributed to the frequency response so that the frequency shift was from positive change to negative change with NO concentration decreasing. In addition, the detection properties of the polyaniline/tin oxide composite thin film could be improved by adding different mixtures. Finally, the interference effects from nitrogen dioxide and carbon dioxide were also investigated in this work, and it is shown that the interferences could be neglected.
摘要I
ABSTRACT II
目錄III
圖目錄V
表目錄VII
第一章 緒論1
1.1 研究背景1
1.2 研究動機3
1.3 論文架構4
第二章 一氧化氮的感測與應用5
2.1 NO的簡介與必要性5
2.2 NO的生物活性作用7
2.2.1 NO對心血管系統的活性作用8
2.2.2 NO在神經系統的活性作用8
2.2.3 NO在呼吸系統中的作用方式9
2.2.4 NO應用在氣喘之檢測9
2.3 NO感測器的回顧12
2.4 小結18
第三章 感測晶片的製作20
3.1 感測系統之架構與晶片特性20
3.1.1 感測系統之架構20
3.1.2 感測晶片之製作與特性量測21
3.2 感測薄膜之配製與塗佈24
3.2.1 感測薄膜之配製24
3.2.2 感測薄膜之塗佈26
3.3 實驗系統之架構27
3.3.1 儀器設備27
3.3.2 系統之架構29
3.3.3 實驗之步驟31
第四章 結果與討論32
4.1 感測材料的特色32
4.2 於20˚C環境下偵測NO的結果與特性35
4.3 於20˚C環境下偵測NO的選擇性43
第五章 結論與未來研究方向44
參考文獻46
圖目錄
圖2.1 靈敏度以及預測控制氣喘患者的氣喘控制損失。黑色實線:EndoNO;灰色虛線:MINO 11
圖2.2 呼出之FENO以及受乙酰膽鹼治療的相關性分散圖。橫虛線:正常與上升之FENO臨界值;縱虛線:接受乙酰膽鹼治療之臨界值11
圖2.3 在溫度200˚C時20% Nb-doping氣體靈敏度12
圖2.4 鎳酞菁薄膜對於不同NO濃度的電流響應,以及電流增量與NO濃度的關係圖13
圖2.5 電流變化與時間關係圖。左圖:未經過乙醇PbPc處理;右圖:經過乙醇PbPc處理15
圖2.6 利用不同掃描速度之電化學循環伏安法掃描PEBTF 16
圖2.7 循環掃描的次數對NO感測器的電流響應之影響16
圖2.8 SnO2−WO3−discs感測器結構圖17
圖2.9 響應變化與溫度的關係圖18
圖3.1 雙通道表面聲波元件結構圖20
圖3.2 (a)打線後之顯微鏡下觀測圖,(b) 上膠封裝後之實際照片22
圖3.3 晶片與感測腔體由螺絲鎖合之實際照片。(a) 正面;(b) 反面23
圖3.4 未塗佈感測薄膜之SAW元件Insertion loss量測圖23
圖3.5 塗佈感測薄膜之SAW元件Insertion loss量測圖24
圖3.6 感測薄膜配製流程圖25
圖3.7 PANI/SnO2複合薄膜之SEM圖,(a):PANI/SnO2複合薄膜添加NaBH4+CuSO4;(b):PANI/SnO2複合薄膜添加CuSO4 26
圖3.8 晶片塗佈流程26
圖3.9 真空烘箱28
圖3.10 電源供應器28
圖3.11 頻率計數器29
圖3.12 GPIB卡29
圖3.13 電腦29
圖3.14 電子式流量控制器29
圖3.15 電子式流量控制器電源供應器29
圖3.16 鋼製氣瓶29
圖3.17 實驗系統架構圖30
圖3.18 加入CO2做干擾實驗之系統架構圖31
圖4.1 兩種PANI/SnO2複合薄膜之SEM圖,(a):PANI/SnO2複合薄膜添加NaBH4+CuSO4;(b):PANI/SnO2複合薄膜添加CuSO4。圖中可以看出其所顯示之均勻度與細緻度33
圖4.2 PANI/SnO2複合材料薄膜添加NaBH4+CuSO4之Cu(2p)的XPS圖34
圖4.3 PANI/SnO2複合材料薄膜添加CuSO4之Cu(2p)的XPS圖34
圖4.4 PANI/SnO2複合薄膜添加NaBH4+CuSO4之感測器於20˚C下頻率響應與NO濃度之關係圖37
圖4.5 PANI/SnO2複合薄膜添加CuSO4之感測器於20˚C下頻率響應與NO濃度之關係圖38
圖4.6 NaBH4+CuSO4之複合薄膜感測器於20˚C下頻率響應與NO濃度關係39
圖4.7 CuSO4之複合薄膜感測器於20˚C下頻率響應與NO濃度關係39
圖4.8 添加NaBH4+CuSO4之複合薄膜感測器於20˚C下對15 ppb之NO的頻率響應特性40
圖4.9 添加CuSO4之複合薄膜感測器於20˚C下對12 ppb之NO的頻率響應特性41 
表目錄
表2.1 汙染物濃度與汙染副指標值對照表6
表2.2 PSI值與健康影響6
表2.3 Nb-doping材料的燒結特性12
表2.4 未經乙醇PbPc處理和乙醇PbPc處理之最大電流比較圖14
表2.5 NO感測器回顧整理19
表3.1 元件設計參數21
表4.1 PANI/SnO2添加CuSO4之複合薄膜,利用四點探針技術檢測所得之結果42
中文部份
[1]郭士豪 著,偵測ppb濃度一氧化氮的表面聲波感測器,義守大學電機工程學系碩士論文,中華民國99年。
[2]程潔菡和徐世達,關於呼氣一氧化氮(exhaled NO)測量的臨床應用, Asthma Education Newsletter., vol. 13, pp. 4-8, 2009.
[3]劉仕苑 著,以聚苯胺為塗層之剪力水平表面聲波氣體感測器之特性研究,義守大學電機工程學系碩士論文,中華民國96年。
[4]鄭永錫 著,偵測環境中二氧化氮之表面聲波感測器特性研究,義守大學電機工程學系碩士論文,中華民國98年。
英文部份
[1]A. D. Smith and D. R. Taylor, “Is exhaled nitric oxide measurement a useful clinical test in asthma,” Curr Opin Allergy Clin Immunol., vol. 5, pp. 49-56, 2005.
[2]A. D. Smith, J. O. Cowan, K. P. Brassett, S. filsell, C. McLanchlan, G. M. Sheehan, G. P. Herbison and D. R. Taylor, “Exhaled nitric oxide a predictor of steroid response,” American journal of respiratory and critical care medicine., vol. 172, pp. 453-459, 2005.
[3]A. Ozier, P. O. Girodet, I. Bara, J. M. Tunon, R. Marthan and P. Berger, “Control maintenance can be predicted by exhaled NO monitoring in asthmatic patients,” Respiratory Medicine., vol. 105, pp. 989-996, 2011.
[4]A. Sharma, M. Tomar and V. Gupta, “Low temperature operating SnO2 thin film sensor loaded with WO3 micro-discs with enhanced response for NO2 gas,” Sens. Actuators B., vol. 161, pp. 1114-1118, 2011.
[5]C. Cantalini, H. T. Sun, M. Faccio, G. Ferri and M. Pelino, “Niobium-doped α-Fe2O3 semiconductor ceramic sensors for the measurement of nitric oxide gases,” Sen. and Actu. B: Chemi., vol. 25, pp. 637-677, 1995.
[6]C. C. Liu, J. H. Li, C. C. Chang, Y. C. Chao, H. F. Meng, S. F. Horng, C. H. Hung and T. C. Meng, “Selective real-time nitric oxide detection by functionalized zinc oxide,” J. Phys. D., vol. 42, pp. 155105-155109, 2009.
[7]D. R. Taylor, M. W. Pijnenburg, A. D. Smith and J. C. D. Jongste, “Exhaled nitric oxide measurements: clinical application and interpretation,” Thorax., vol. 61, pp. 817-827, 2006.
[8]F. D. Martinez, V. M. Chinchilli, W. J. Morgan, S. J. Boehmer, R. F. Lemanske, D. T. Mauger, R. C. Strunk, S. J. Szefler, R. S. Zeiger, L. B. Bacharier, E. Bade, R. A. Covar, N. J. Friedman, T. W. Guilbert, H. Heidarian-Raissy, H. W. Kelly, J. Malka-Rais, M. H. Mellon, C. A. Sorkness and L. Taussig, “Use of beclomethasone dipropionate as rescue treatment for children with mild persistent asthma(TREXA):a randomised, double-blind, placebo-controlled trial,” Thelancet., vol. 377, pp. 650-657, 2011.
[9]G. S. Kino, Acoustic waves: devices, imaging, and analog signal processing, Prentice-Hall, New Jersey, 1987.
[10]H. F. Jin, J. B. Du and C. S. Tang, “Significance of gaseous signal molecule in the pathogenesis of cardiovascular diseases,” Acta Academiae Medicinae Sinicae., vol. 27, pp. 518-524, 2005.
[11]H. P. Löbl, M. Klee, C. Metzmacher, W. Brand, R. Milsom and P. Lok, “Piezoelectric thin AlN films for bulk acoustic wave (BAW) resonators,” Materi. Chem. and Phys., vol. 79, pp. 143-146, 2003.
[12]H. P. Löbl, M. Klee, R. Milsom, R. Dekker, C. Metzmacher, W. Brand and P. Lok, “Materials for bulk acoustic wave (BAW) resonators and filters,” Journal of the European Ceramic Society, vol. 21, pp. 2633-2640, 2011.
[13]J. D. Maines and E. G. S. Paige, “Surface acoustic wave devices for signal processing applications,” Proc. IEEE Ultrasonic Symp., pp. 639-652, 1976.
[14]J. F. Rosenbaum, Bulk acoustic wave theory and devices, Artech House, Boston, 1988.
[15]J. Kondoh, Y. Matsui and S. Shiokawa, “SH-SAW biosensor based on pH-change,” Proc. IEEE Ultrasonics Symp., pp. 337-340, 1993.
[16]J. Sun, P. C. Hauser, V. Zhelyaskov, J. Lin, M. Broderick, H. Fein and X. J. Zhang, “A new nitric oxide gas sensor based on reticulated vitreous carbon/nafion and its applications,” Electroanalysis., vol. 16, pp. 1723-1729, 2004.
[17]K. C. Ho, C. M. Chen and J. Y. Liao, “Enhancing chemiresistor-type NO gas-sensing properties using ethanol-treated lead phthalocyanine thin filns,” Sen. and Actu. B: Chemi., vol. 108, pp. 418-426, 2005.
[18]K. C. Ho and Y. H. Tsou, “Chemiresistor-type NO gas sensor based on nickel phthalocyanine thin films,” Sen. and Actu. B: Chemi., vol. 77, pp. 253-259, 2001.
[19]L. E. Gustafsson, A. M. Leone, M. G. Persson, N. P. Wiklund and S. Moncada, “Endogenous nitric oxide is present in the exhaled air of rabbits, guinea pigs and humans,” Biochem. Biophys. Res. Commun., vol. 181, pp. 852-857, 1991.
[20]Lord Rayleigh, “On wave propagated along the plane surface of an elastic solid,” Proc. London Math. Soc., vol. 17, pp. 4-11, 1885.
[21]M. Geng, J. Xu and S. Hu, “In situ electrogenerated ploy(Eriochrome black T)film and its application in nitric oxide sensor,” Reac. and Func. Poly., vol. 68, pp. 1253-1259, 2008.
[22]M. Penza, E. Milella and V. I. Anisimkin, “Gas sensing properties of Langmuir-Blodgett polypyrrole film investigated by surface acoustic waves,” IEEE Trans. Ultrason. Ferroelec. Freq.. Control, vol. 45, pp. 1125-1131, 1998.
[23]M. Thompson and D. C. Stone, Surface-launched acoustic wave sensors, New York : John Wiely & Sons, Inc., 1997.
[24]M. Ylilammi, J. Ellä, M. Partanen and J. Kaitila, “Thin film bulk acoustic wave filter,” IEEE Trans. on Ultrason. Ferroelec. and Freq. Control, vol. 49, pp. 535-539, 2002.
[25]R. C. Holt and G. J. Gouws, “The use of bulk acoustic wave as probes of material properties,” Current Applied Phys., vol. 4, pp. 296-299, 2004.
[26]R. Djukanovic, W. R. Roche and J. W. Wilson, “Mucosal inflammation in asthma,” Am. Rev. Respir. Dis., vol. 142, pp. 434-457, 1990.
[27]R. F. Furchgott, “The role of endothelium in the responses of vascular smooth muscle to drugs,” Annual Review of Pharmacology and Toxicology., vol. 24, pp. 175-197, 1984.
[28]R. F. Furchgott and J. V. Zawadzki, “The obligatory role of endothelial cells in the relaxationof arterial smooth muscle by acetylcholine,” Nature., vol. 3, pp. 373-376, 1980.
[29]R. F. Furchgott, K. H. Ignarro and F. Muard, “1998 Nobel prize winners are announced: three discoverers of nitric oxide activity,” The Journal of the American Medical Association., vol. 208, pp. 1648, 1998.
[30]R. M. J. Palmer, A. G. Ferrige and S. Moncada, “Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor,” Nature., vol. 327, pp. 524-526, 1987.
[31]R. M. White, “Surfaces elastic waves,” Proc. IEEE Ultrasonics Symp., pp. 1238-1276, 1970.
[32]R. M. White and F. W. Voltmer, “Direct piezoelectric coupling to surface elastic wave,” Appl. Phys. Lett., vol. 7, pp. 314, 1965.
[33]S. A. Kharitonov, D. H. Yates and P. J. Barnes, “Inhaled glucocorticoids decrease nitric oxide in exhaled air of asthmatic patients,” American journal of respiratory and critical care medicine., vol. 153, pp. 454-457, 1996.
[34]S. P. Mondal, P. K. Dutta, G. W. Hunter, B. J. Ward, D. Laskowski and R. A. Dweik, “Development of high sensitivity potentiometric NOX sensor and its application to breath analysis,” Sens. Actuators B., vol. 158, pp. 292-298, 2011.
[35]V. C. Moore, W. Anees, M. S. Jaakkola, C. B. S. G. Burge, A. S. Robertson and P. S. Burge, “Two variants of occupational asthma separable by exhaled breath nitric oxide level,” Respiratory Medicine., vol. 104, pp. 873-879, 2010.
[36]W. Gao, J. Chen, X. Guan, R. Jin, F. Zhang and N. Guan, “Catalytic reduction of nitrite ions in drinking water over Pd-Cu/TiO2 bimetallic catalyst,” Science Direct., vol. 93, pp. 333-339, 2004.
[37]W. H. King, “Piezoelectric sorption detector,” Anal. Chem., vol. 36, pp. 1735-1739, 1964.
[38]X. B. Yan, Z. J. Han, Y. Yang and B. K. Tay, “NO2 gas sensing with polyaniline nanofibers synthesized by a facile aqueous/organic interfacial polymerization,” Sen. and Actu. B., vol. 123, pp. 107-113, 2007.
[39]Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B., vol. 82, pp. 149-154, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top