跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/18 12:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:伍伯驥
研究生(外文):Wu, Boji
論文名稱:表面力及粗糙度效應於擠壓薄膜彈液動潤滑分析
論文名稱(外文):Study On The Effect Of The Surface Forces At Squeeze Elastohydrodynamic Lubrication Motion With Surface Roughness
指導教授:朱力民朱力民引用關係
指導教授(外文):Chu, Liming
口試委員:林昭仁徐祥禎朱力民
口試委員(外文):Lin, JhaorenHsu, HsiangchenChu, Liming
口試日期:2012-07-20
學位類別:碩士
校院名稱:義守大學
系所名稱:機械與自動化工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:81
中文關鍵詞:表面粗糙度表面力彈液動潤滑擠壓油膜定負荷
外文關鍵詞:Surface RoughnessSurface ForceElastohydrodynamic LubricationSqueezing FilmConstant Loading
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1497
  • 評分評分:
  • 下載下載:59
  • 收藏至我的研究室書目清單書目收藏:0
本文探討一鋼球與平板間在皆具有表面粗糙度的情況作用下,定負荷之彈液動潤滑(EHL)特性。在定負荷條件下,使用修正型雷諾方程式、表面力方程式、負載平衡方程式、黏度與壓力方密度關係方程式、彈性變形方程式,求解得到暫態的油膜壓力、油膜厚度及正向擠壓速度。分析圓周型及徑向型兩種不同表面粗糙度效應,結果顯示,擠壓效應導致鋼球彈性變形,產生內凹(dimple)現象,中心油膜厚度與最小油膜厚度會開始分離,接觸中心處內凹深度及壓力為最大,而越往鋼球外緣,深度及壓力越小。圓周型產生潤滑油積蓄效應,其中心及最小膜厚度會最高,而中心油膜壓力則最低。徑向型則因疏導效應,其中心及最小膜厚會最低,而中心油膜壓力會最高。而當表面粗糙度高度(C)增加時,其影響結果會變得更為明顯。另外當薄膜厚度小於5nm,表面力效應顯著,壓力與油膜厚度的震盪現象主要是來自結構力的影響,其也影響液動壓力,油膜變薄表面力效應越大。
In this study, the pure squeeze elastohydrodynamic lubrication (EHL) motion of circular contacts with surface roughness in the presence of a transverse magnetic field is explored at constant loading. the coupled transient-modified Reynolds, the Load balance equation, the Rheology equation, and the elasticity deformation, are all solved simultaneously at constant loading, thus obtaining the transient pressure profiles, film shapes and normal squeeze velocities. The result revealed that the squeeze effects lead to elastic deformation of steel ball, and produced dimple. Therefore, the central film thickness and minimum film thicknesses begine to separate, and dimple depth and pressure of the contact center reach maximum contact in the center. The closer the steel balls were to the outer edge, the smaller the depth and pressure of the dimple. The effect produced by the circular type, central film thickness and minimum film thicknesses would be highest, pressure profiles would be lowest. This effect was modulated by the radial. Central film thickness and minimum film thicknesses would be lowest, pressure profiles would be highest. In addition, when the surface roughness height increases, the enhancing effect became more obvious. The simulation results reveal that the differences between radial type roughness and circular type roughness problems are apparent as the film thickness is thinner than 5 nm. The oscillation phenomena in pressure and film thickness come mainly from the action of solvation forces. The effects of surface forces become significant as the film thickness becomes thinner. The film thickness with circular type roughness is thicker than that with radial type roughness.
摘要i
ABSTRACT ii
誌謝iii
圖目錄vi
表目錄viii
符號說明ix
第一章 緒論1
1.1 前言1
1.2 文獻回顧2
1.3 研究動機與目的8
第二章 理論分析10
2.1 修正型雷諾方程式10
2.2 液動潤滑12
2.3 流變方程式13
2.4 表面力14
2.5 彈性方程式15
2.6 力平衡方程式15
第三章 數值模型16
3.1 模型描述與基本假設16
3.2 數值方法19
第四章 結果與討論21
4.1 表面力效應21
4.2 粗糙度效應24
第五章 結論與未來展望62
5.1 結論62
5.2 未來展望62
參考文獻64
圖目錄
圖2-1 表面力壓力變化圖14
圖3-1 兩圓球沿法線接近之擠壓示意圖16
圖3-2 等效鋼球擠壓平面示意圖17
圖3-3 彈液動擠壓接觸示意圖18
圖3-4 內凹區(A部分)部分放大圖18
圖3-5 Yang和Wen數值結果與本文數值結果的比較20
圖4-1 兩種模式隨時間變化之壓力分佈圖28
圖4-2 兩種模式隨時間變化之壓力分佈圖29
圖4-3 兩種模式隨時間變化之油膜厚度分佈圖30
圖4-4 兩種模式在t = 0.5sec沿r軸方向的總壓力分佈圖31
圖4-5 表面力模式在t = 0.5 sec沿r軸方向的壓力分佈圖32
圖4-6 兩種模式在t = 0.5 sec沿r軸方向的油膜厚度分佈圖33
圖4-7 兩種模式之剛體分隔距離隨時間的變化情形34
圖4-8 兩種模式之中心油膜厚度隨時間的變化情形35
圖4-9 兩種模式之最小油膜厚度隨時間的變化情形36
圖4-10 兩種模式之中心壓力隨時間的變化情形37
圖4-11 不同荷重之剛體分隔距離隨時間變化的情形38
圖4-12 不同荷重之中心油膜厚度隨時間變化的情形39
圖4-13 不同荷重之最小油膜厚度隨時間變化的情形40
圖4-14 不同荷重之中心壓力隨時間變化的情形41
圖4-15 兩種模式在r =0.04 mm隨時間變化的總壓力分佈情形42
圖4-16 表面力模式在r =0.04 mm隨時間變化的壓力分佈情形43
圖4-17 兩種模式在r =0.04 mm隨時間變化的油膜厚度分佈情形44
圖4-18 兩種模式在t = 0.5 sec沿r軸方向的黏度分佈圖45
圖4-19 兩種模式在t = 0.5 sec沿r軸方向的密度分佈圖46
圖4-20 兩種表面粗糙度隨時間變化的總壓力分佈情形47
圖4-21 兩種表面粗糙度隨時間變化的油膜厚度分佈情形48
圖4-22 兩種表面粗糙度隨時間變化的液動壓力分佈情形49
圖4-23 兩種表面粗糙度隨時間變化的結構力分佈情形50
圖4-24 兩種表面粗糙度在t = 0.226 sec的總壓力分佈圖51
圖4-25 兩種表面粗糙度在t = 0.226 sec的液動壓力分佈圖52
圖4-26 兩種表面粗糙度在t = 0.226 sec的結構力分佈圖53
圖4-27 兩種表面粗糙度在t = 0.226 sec的凡得瓦力分佈圖54
圖4-28 兩種表面粗糙度在t = 0.226sec的油膜厚度分佈圖55
圖4-29 兩種表面粗糙度之剛體分離距離隨時間變化的情形56
圖4-30 兩種表面粗糙度之中心油膜厚隨時間變化情形57
圖4-31 兩種表面粗糙度之最小油膜厚度隨時間變化情形58
圖4-32 兩種表面粗糙度之中心壓力隨時間變化情形59
圖4-33 徑向型不同粗糙度高度之最小油膜厚度與中心壓力隨時間變化情形60
圖4-34 圓周型不同粗糙度高度之最小油膜厚度與中心壓力隨時間變化情形61
表目錄
表3-1 彈液動潤滑數值分析之輸入參數表20
[1]Al-Samieh M and Rahnejat H. J Phys D, Appl Phys 2001;34:2610-21.
[2]Al-Samieh M, Rahnejat H. J Phys D, Appl Phys 2002;35:2311-26.
[3]Bhushan B., Micro/Nanotribology and its Applications, Dordrecht:Kluwer Academic (1997).
[4]C. M. Myllerup and B. J. Hamrock, Thin Films in Tribology. Elseriver, (1993), 39~57.
[5]Cameron A., Gohar R., 1966, “Theoretical and Experimental Studies of the Oil Film in Lubricated Point Contact”, Proceedings of the Royal Society A, vol. 291, pp.520-536.
[6]Chaohui Zhang, Jianbin Luo, and Shizhu Wen, ASME J. of Tribology, 124 (2002), 811-814.
[7]Christensen H., 1962, “The Oil Film in a Closing Gap”, Proceedings of the Royal Society A, vol. 226, pp.312-328.
[8]Christensen H., 1970, “Elastohydrodynamic theory of spherical bodies in normal approach”, ASME, Journal of Lubrication Technology, vol. 92, No. 1, pp.145-154.
[9]D. Nicholson and N. G. Parsonage, Computer simulation and the statistical mechanics of adsorption, Academic Press, (1982).
[10]D. Y. C. Chan and R. G. Horn, J. Chem. Phys., 83 (1985), 5311-5324.
[11]Dowson D., “Developments in lubrication - the thinning film”, Jour. Phys. D, Appl. Phys., 25 (1992), A334-A339.
[12]Dowson D., Higginson G.R., 1966, “Elasto hydrodynamic Lubrication”, Pergamon Press, pp.88–92.
[13]Dowson D., Jones D. A., 1967, “Lubricant Entrapment Between Approaching Elastic Solids”, Nature(London), vol. 214, No. 5091, pp. 947-948.
[14]Dowson D., Wang D., 1994, “An Analysis of the Normal Bouncing of a Solid Elastic Ball on an Oily Plate”, Wear, vol. 179, pp.29-37.
[15]Elrod, H. G., ASME Journal of Lubrication Technology, Vol. 101, (1979), pp.8-14.
[16]G. Guangteng and H. A. spikes, STLE, 39 (1996), 448-454.
[17]Georges, J. M., Millot, S, Loubet, J. L. and Tonck, A, Jour. Chem. Phys., 98, 9 (1993), 7345-7360.
[18]Hamrock, B. J., 1994, “ Fundamentals of fluid film lubrication,”McGraw-Hill, Inc., New York .
[19]Hiroshige Matsuoka and Takahisa Kato, ASME J. of Tribology, 118 (1996), 832-838.
[20]Hiroshige Matsuoka and Takahisa Kato, ASME J. of Tribology, 119 (1997), 217-226.
[21]Hu, Y., and Zheng, L., ASME Journal of Tribology, Vol. 111, (1989), pp.525-531.
[22]Israelachvili J, Intermolecular and Surface Force, 2nd Edition, Academic Press, 1991.
[23]J. A. Tichy, ASME J. of Tribology, 117 (1995), 16-21.
[24]J. A. Tichy, STLE, 38 (1995), 108-118.
[25]J. A. Tichy, STLE, 38 (1995), 577-582.
[26]J. Koplik, J. R. Banavar, Willemsen, Phys. Rev. Lett, 60 (13) (1988), 1282-1285.
[27]J. L. Streator, J. P. Gerhardstein, Thin Films in Tribology. Elsevier, (1993), 461-470.
[28]J. M. Georges, S. Millot, J. L. Loubet et al, Thin Films in Tribology. Elsevier, (1993), 443-452.
[29]Jianbin Luo, Shizhu Wen and Pin Huang, “Thin film lubrication. Part I: Study on the transition between EHL and thin film lubrication using a relative optical interference intensity technique”, Wear, 194 (1996), 107-115.
[30]Johnston G. J., R. Wayte and H. A. Spikes, “Measurement and study of very thin lubricant films in concentrated contacts”, STLE, 34 (1991), 187-194.
[31]L. H.anon, G. C. Lic, E. Clementi, Phys. Lett, A, 119 (4), 174-177.
[32]Larsson R., and Högund E., “Elastohydrodynamic Lubricated at Pure Squeeze Action,” Wear, vol. 179, 1994, pp.39-43.
[33]Larsson R., Högund E., 1994, “Elastohydrodynamic Lubricated at Impact loading,” ASME, Journal of Tribology, vol. 116, pp.770-776.
[34]Larsson R., Högund E., 1995, “Numerical Simulation of a Ball Impacting and Rebounding a Lubricated Surface”, ASME, Journal of Tribology, vol. 117, pp.94-102.
[35]Lee R. T., Hamrock B. J., 1989, “Squeeze and Entraining Motion in Nonconformal Line Contacts, Part I: Hydrodynamic Lubrication”, ASME, Journal of Tribology, vol. 111, pp.8-16.
[36]Lee R. T., Hamrock B. J., 1989, “Squeeze and Entraining Motion in Nonconformal Line Contacts, Part II: Elastohydrodynamic Lubrication”, ASME, Journal of Tribology, vol. 111, pp.8-16.
[37]Lundberg J., Ostensen J. O., Astrom H., 1992, “High-Speed Video Photographs of Lubricated Breakdown in a Squeeze/Sliding Contact”, Wear, vol. 157, pp.427-433.
[38]M. Hartl, I. Krupka, R. Poliscuk, M. Liska, J. Molimard, M. Querry and P. Vergne, “Thin film colorimetric interferometry STLE”, 44 (2001), 270-276.
[39]Moore, A. J., Nanometer elastohydrodynamic lubrication, in Proc. of the 25th Leed-Lyon Symposium on Tribology, (1997), 57-67.
[40]P Pourgheysar, G. A. Mansoorj, H. Modarress, J. Chem. Phys. 105 (21) (1996), 9580-9587.
[41]Patir, N., and Cheng, H. S., ASME Journal of Lubrication Technology, Vol. 101, No. 4, (1979), pp.220-230.
[42]Paul G. R., Cameron A., 1972, “An absolute high-pressure microviscometer based on refractive index,” Proceedings of the Royal Society A, vol. 331, pp.171-184.
[43]Qu Qingwen, Hu Yahong, and Zhu Jun, WEAR, 221 (1998), 9-14.
[44]Qu Qingwen, Wang Mei, Chai Shan, Yao Fusheng, Tribology International, 34 (2001), 517-521.
[45]Ren N.,Zhu D. and Wen S. Z., 1991, “Experimental Method for Quantitative Analysis of Transient EHL,”Tribol. Int., vol. 24, N. 4,pp. 225-230.
[46]Roelands C. J. A., Vlugter J. C., Watermann H. I., 1963, “The viscosity temperature pressure relationship of lubricating oils and its correlation with chemical constitution”, ASME, Journal of Basic Engineering, pp. 601-606.
[47]Safa M. M. A., Gohar R., 1986, “Pressure Distribution Under a Ball Impacting a Thin Lubricant Layer,” ASME, Journal of Tribology, vol. 108, pp.372-376.
[48]Siyoul Jang and John Tichy, ASME J. of Tribology, 117 (1995), 22-28.
[49]Teodorescu M, Balakrishnan S, Rahnejat H. Proc I Mech E, Part N: J. Nanoengineering and Nanosystems 2006;220:7-19.
[50]Tripp, J. H., ASME Journal of Lubrication Technology, Vol. 105, No. 3, (1983), pp.458-465.
[51]Wong P. L., Lingard S., Camerson, 1992, “The high pressure impact microviscometer”, STLE Tribology Transaction, vol. 35, No. 3, pp. 500-508.
[52]Yang P. R., Wen S. Z., “Pure Squeeze Action in an Isothermal Elastohydrodynamic Lubricated Spherical Conjunction, Part 1: Theory and Dynamic Load Results”, Wear, 1991, vol. 142, pp.1-16.
[53]Yang P. R., Wen S. Z., 1991, “Pure Squeeze Action in an Isothermal Elastohydrodynamic Lubricated Spherical Conjunction, Part 1: Theory and Dynamic Load Results”, Wear, vol. 142, pp.1-16.
[54]Yang P. R., Wen S. Z., 1991, “Pure Squeeze Action in an Isothermal Elastohydrodynamic Lubricated Spherical Conjunction, Part 2: Constant Speed and Constant Load Results”, Wear, vol. 142, pp.17-30.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top