(34.201.11.222) 您好!臺灣時間:2021/02/25 05:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:阮雍順
研究生(外文):Yung-Shun Juan
論文名稱:兒茶素對於手術停經所誘發的過動性膀胱的保護作用
論文名稱(外文):Protective effect of epigallocatechin-3-gallate on surgical menopause induced overactive bladder
指導教授:黃俊雄黃俊雄引用關係陳淑姿陳淑姿引用關係龍震宇龍震宇引用關係
指導教授(外文):Chun-Hsiung HuangShu-Tzu ChenCheng-Yu Long
學位類別:博士
校院名稱:高雄醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:英文
論文頁數:101
中文關鍵詞:過動性膀胱
外文關鍵詞:overactive bladdersovariectomyEpigallocatechin-3- gallatemenopauseinterstital fibrosis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:356
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
女性的生殖系統與下泌尿道是由相同的生殖泌尿囊所分化而來,兩者都對女性荷爾蒙具有敏感性。停經後的婦女容易產生一些泌尿功能的障礙,包括過動性膀胱、尿失禁以及反覆性的泌尿道感染。在本論文的第一章我們研究低濃度的雌激素蒙補充是否和高濃度雌激素補充一樣有效。我們利用紐西蘭大白兔接受卵巢切除手術,並給予0.1mg/kg/day低劑量雌激素或1mg/kg/day的高劑量雌激素。結果發現無論是低劑量或是高劑量雌激素都會增加膀胱對電刺激、三磷酸腺苷(ATP)、碳醯膽鹼、和氯化鉀的收縮反應。而兩種不同濃度的雌激素也都會增加膀胱平滑肌的增生、減少膀胱壁內的膠原蛋白含量,並增加檸檬酸合成酶的活性反應。
綠茶是一種全世界風行的飲料,它裡面含有許多種不同的茶多酚物質。Epigallocatechin-3-gallate (EGCG)是兒茶素中的主要成分,最近的研究發現EGCG具有抗氧化、抗發炎以及抗癌的效果。在本論文的第二章我們主要的研究目標就是想知道EGCG是否可以預防卵巢切除後所造成的過動性膀胱。我們將大白鼠分別接受卵巢切除手術,以低濃度(1μM/kg/day) EGCG或高濃度(10μM/kg/day) EGCG腹膜注射,手術後6個月將大白鼠犧牲作研究。結果發現經過長時間的卵巢切除後,膀胱的非解尿性收縮會明顯增加,而給予EGCG治療則可以減少這些非解尿性的收縮。卵巢切除同時也會明顯減少膀胱壁內神經纖維的含量,增加膽鹼激素接受器M2、M3蛋白質以及核糖核酸的表現;給予EGCG治療則可以減少膽鹼激素接受器M2、M3的蛋白質以及核糖核酸表現,但是增加膀胱壁內神經纖維的含量。在本論文的第三章我們主要是研究EGCG是否具有抗氧化、抗細胞凋零與抗發炎等效果。我們的結果發現卵巢除膀胱內的間質纖維化並增加凋零的細胞。而caspase-3、轉形生長因子-β(TGF-β)、纖維結合素以及第一型膠原蛋白的蛋白質表現在長時間的卵巢切除後也會明顯增加,但是Bcl-2則會明顯減少;給予EGCG治療可以減少膀胱內轉形生長因子-β、纖維結合素以及第一型膠原蛋白的蛋白質表現。而氧化壓力指標:硝基酪胺酸和碳化蛋白質的含量,在卵巢切除後化明顯增加;EGCG的治療則可以減少膀胱受到氧化壓力的傷害,而這些保護的作用是和EGCG的劑量濃度成正相關的。
我們的研究發現無論是短期或長期的卵巢切除都會減少膀胱收縮力,並增加膀胱間質纖維化,低濃度的雌激素可以產生類似於高濃度雌激素對膀胱所造成的生理、型態以及生化方面的效果。長期卵巢荷爾蒙缺乏會誘發過動性膀胱增加膀胱壁內神經的傷害增加膽鹼激素接受器過度表現增加膀胱間質纖維化並提高氧化壓力。EGCG可以預防卵巢切除所造成的膀胱功能障礙,而這種保護作用是經由保護神經、抗氧化、抗細胞凋零與抗發炎等效果所達成的。而這些保護的效果是和EGCG的濃度成正相關的。

The female genital and lower urinary tracts arise from the same urogenital sinus and both are sensitive to female sex steroid hormones. Postmenopausal women are subject to a number of urological dysfunctions including overactive bladders (OAB), incontinence, and recurrent urinary tract infections. The aim of the first chapter was designed to determine whether low-dose estrogen supplementation is as effective as high-dose in increasing bladder contractile function and mediating bladder hypertrophy and angiogenesis. White female rabbits were separated into four groups underwent ovariectomy (Ovx) surgery with low dose (0.1 mg/kg/day) or high dose (1.0mg/kg/day) 17-beta estradiol treatment for 7 days. Both low and high dose estrogen administration resulted in similar significant increases in the contractile responses to field stimulation, ATP, carbachol, and KCl. Similarly, both doses of estrogen mediated significant hypertrophy of the smooth muscle and decrease in collagen, similar levels of angiogenesis, and similar, increases of citrate synthase activity.
Green tea is a widely consumed beverage around the world. It contains several polyphenolic compounds. Epigallocatechin-3- gallate (EGCG), the major component of catechin, has recently attracted attentions for its anti-oxidative, anti-inflammatory, and anti-carcinogenic properties. The aim of the second chapter was to evaluate whether the green tea extract, epigallocatechin-3-gallate (EGCG), could prevent ovariectomy-induced overactive bladder. The study included female Sprague-Dawley (SD) rats which received bilateral ovariectomy with either low (1μM/kg/day) or high (10 μM/kg/day) dose EGCG injection. The present rsults showed long-term ovariectomy significantly increased non-voiding contractions while treatment with EGCG significantly attenuated the frequency of non-voiding contractions. Ovariectomy significantly decreased the numbers of neurofilament and increased M2, M3 MChR protein and mRNA expressions. Treatment with EGCG restored the number of neurofilament staining and decreased M2, M3 MChR protein and mRNA over-expressions. The third chapter was aimed to evaluate whether EGCG has antioxidant, anti-apoptotic and anti-fibrosis effects. The present results showed ovariectomy significantly increased apoptotic cells and enhanced interstitial fibrosis in bladders. The expression of caspase-3 significantly increased while that of Bcl-2 notably decreased after ovariectomy. Inflammatory and fibrosis markers, transforming growth factor-β (TGF-β), fibronectin and type I collagen expressions were significantly increased after 6 months ovariectomy surgery. Treatment with EGCG significantly decreased TGF-β and type I collagen expressions. Oxidative stress markers, nitrotyrosine and protein carbonylation levels significantly increased in the ovariectomy group. EGCG could attenuate these oxidative damages in a dose related fashion.
These studies confirmed that both short-term and long-term ovariectomy decreased bladder contractility and increased interstitial fibrosis. Low dose estrogen produces similar physiological, morphological, and biochemical effects on the bladder as has been shown for high dose estrogen. Long-term ovary hormone deficiency induced overactive bladder dysfunction, increased intramural nerve damages, enhanced muscarinic receptors over-expressions, increased interstital fibrosis and raised oxidative stress. EGCG could prevent ovariectomy-induced bladder dysfunction through neuroprotective, antioxidant, anti-apoptotic and anti-fibrosis effects in a dose related fashion.


Abbreviation ……………………………………………………………..…...IV
致謝....................................................................................................................1
英文摘要......................…………………………………………………....…..2
中文摘要............................................................................................................4
Introduction………………………………………………...……….…..…....6
Chapter 1 ………………………….……. ….………………………………..11
1.1. Introduction…………………………………………………….....….......12
1.2. Materials and Methods …………………………………………………..13
1.3. Results …………………………………………………………………...16
1.4. Discussion………………………………………………………………..18
Figures 1-6 …………………………………………………………….……..21
Chapter 2 ………………………….……. ….…………………………….….28
2.1. Introduction……………………………………………………......…......29
2.2. Materials and Methods ……………………………………………….….31
2.3. Results …………………………………………………………………...37
2.4. Discussion…………………………………………………………….….40
Figures 1-6 …………………………………………………………….…..…44
Chapter 3 ………………………….……. ….……………………………….56
2.1. Introduction…………………………………………………….....…......57
2.2. Materials and Methods ………………………………………………….59
2.3. Results …………………………………………………………………..63
2.4. Discussion……………………………………………………………….66
2.5. References ………………………………………………………………71
Figures 1-6 …………………………………………………………….….…70
Conclusions…………………………………………………………….….….84
References…………………………………………………………………….85
Publications ………………………………………………………….…….....96
Poster abstracts…………………………………………….…………….…,..100


[1]Iosif CS, Batra S, Ek A, Astedt B. Estrogen receptors in the human female lower uninary tract. Am J Obstet Gynecol. 1981: 141:817-20
[2]Batra SC, Iosif CS. Progesterone receptors in the female lower urinary tract. J Urol. 1987: 138:1301-4
[3]Cardozo L, Lose G, McClish D, Versi E. A systematic review of the effects of estrogens for symptoms suggestive of overactive bladder. Acta Obstet Gynecol Scand. 2004: 83:892-7
[4]Lin AD, Mannikarottu A, Kogan BA, et al. Estrogen induces angiogenesis of the female rabbit bladder. J Endocrinol. 2006: 190:241-6
[5]Lin AD, Levin R, Kogan B, et al. Estrogen induced functional hypertrophy and increased force generation of the female rabbit bladder. Neurourol Urodyn. 2006: 25:473-9
[6]Liang W, Afshar K, Stothers L, Laher I. The influence of ovariectomy and estrogen replacement on voiding patterns and detrusor muscarinic receptor affinity in the rat. Life Sciences. 2002: 71:351-62
[7]Stewart WF, Van Rooyen JB, Cundiff GW, et al. Prevalence and burden of overactive bladder in the United States. World J Urol. 2003: 20:327-36
[8]Chen GD, Hu SW, Chen YC, Lin TL, Lin LY. Prevalence and correlations of anal incontinence and constipation in Taiwanese women. Neurourology and Urodynamics. 2003: 22:664-9
[9]Chen JJ, Ye ZQ, Koo MW. Growth inhibition and cell cycle arrest effects of epigallocatechin gallate in the NBT-II bladder tumour cell line. BJU international. 2004: 93:1082-6
[10]Long CY, Hsu CS, Shao PL, Liu CM, Su JH, Tsai EM. Effect of ovariectomy on the gene expression of detrusor muscarinic receptors in female rats. Fertility and Sterility. 2009: 92:1147-9
[11]Levin RM, Shofer FS, Wein AJ. Estrogen-induced alterations in the autonomic responses of the rabbit urinary bladder. J Pharmacol Exp Ther. 1980: 215:614-8
[12]Robinson D, Cardozo LD. The role of estrogens in female lower urinary tract dysfunction. Urology. 2003: 62:45-51
[13]Ekstrom J, Iosif CS, Malmberg L. Effects of long-term treatment with estrogen and progesterone on in vitro muscle responses of the female rabbit urinary bladder and urethra to autonomic drugs and nerve stimulation. The Journal of Urology. 1993: 150:1284-8
[14]Long CY, Liu CM, Hsu SC, Chen YH, Wu CH, Tsai EM. A randomized comparative study of the effects of oral and topical estrogen therapy on the lower urinary tract of hysterectomized postmenopausal women. Fertility and Sterility. 2006: 85:155-60
[15]Long CY, Liu CM, Hsu SC, Wu CH, Wang CL, Tsai EM. A randomized comparative study of the effects of oral and topical estrogen therapy on the vaginal vascularization and sexual function in hysterectomized postmenopausal women. Menopause, 2006: 13:737-43
[16]Weiderpass E, Baron JA, Adami HO, et al. Low-potency oestrogen and risk of endometrial cancer: a case-control study. Lancet. 1999: 353:1824-8
[17]Ettinger B. Personal perspective on low-dosage estrogen therapy for postmenopausal women. Menopause. 1999: 6:273-6
[18]Aikawa K, Sugino T, Matsumoto S, Chichester P, Whitbeck C, Levin RM. The effect of ovariectomy and estradiol on rabbit bladder smooth muscle contraction and morphology. J Urol. 2003: 170:634-7
[19]Palmieri K, Mannikarottu AS, Chichester P, et al. The effects of cyclical oestrogen on bladder and urethral structure and function. BJU Int. 2007: 99:171-6
[20]Koh KK, Shin MS, Sakuma I, et al. Effects of conventional or lower doses of hormone replacement therapy in postmenopausal women. Arterioscler Thromb Vasc Biol. 2004: 24:1516-21
[21]Heikkinen J, Vaheri R, Kainulainen P, Timonen U. Long-term continuous combined hormone replacement therapy in the prevention of postmenopausal bone loss: a comparison of high- and low-dose estrogen-progestin regimens. Osteoporos Int. 2000: 11:929-37
[22]Huber JC, Campagnoli C, Druckmann R, et al. Recommendations for estrogen and progestin replacement in the climacteric and postmenopause. European Progestin Club. Maturitas. 1999: 33:197-209
[23]Palacios S, Castelo-Branco C, Cancelo MJ, Vazquez F. Low-dose, vaginally administered estrogens may enhance local benefits of systemic therapy in the treatment of urogenital atrophy in postmenopausal women on hormone therapy. Maturitas. 2005: 50:98-104
[24]Pan MH, Lin-Shiau SY, Ho CT, Lin JH, Lin JK. Suppression of lipopolysaccharide-induced nuclear factor-kappaB activity by theaflavin-3,3''-digallate from black tea and other polyphenols through down-regulation of IkappaB kinase activity in macrophages. Biochem Pharmacol. 2000: 59:357-67
[25]Higdon JV, Frei B. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Critical Reviews in Food Science and Nutrition. 2003: 43:89-143
[26]Hasegawa M. Biochemistry and molecular biology of tauopathies. Neuropathology. 2006: 26:484-90
[27]Salah N, Miller NJ, Paganga G, Tijburg L, Bolwell GP, Rice-Evans C. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch Biochem Biophys. 1995: 322:339-46
[28]Nanjo F, Goto K, Seto R, Suzuki M, Sakai M, Hara Y. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radic Biol Med. 1996: 21:895-902
[29]Guo Q, Zhao B, Li M, Shen S, Xin W. Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochim Biophys Acta. 1996: 1304:210-22
[30]Levites Y, Youdim MB, Maor G, Mandel S. Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappaB (NF-kappaB) activation and cell death by tea extracts in neuronal cultures. Biochem Pharmacol. 2002: 63:21-9
[31]Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S. Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem. 2001: 78:1073-82
[32]Philips BJ, Coyle CH, Morrisroe SN, Chancellor MB, Yoshimura N. Induction of apoptosis in human bladder cancer cells by green tea catechins. Biomed Res. 2009: 30:207-15
[33]Kurahashi N, Inoue M, Iwasaki M, Sasazuki S, Tsugane S. Coffee, green tea, and caffeine consumption and subsequent risk of bladder cancer in relation to smoking status: a prospective study in Japan. Cancer Sci. 2009: 100:294-91
[34]Qin J, Xie LP, Zheng XY, et al. A component of green tea, (-)-epigallocatechin-3-gallate, promotes apoptosis in T24 human bladder cancer cells via modulation of the PI3K/Akt pathway and Bcl-2 family proteins. Biochem Biophys Res Commun. 2007: 354:852-7
[35]Kemberling JK, Hampton JA, Keck RW, Gomez MA, Selman SH. Inhibition of bladder tumor growth by the green tea derivative epigallocatechin-3-gallate. The Journal of urology. 2003: 170:773-6
[36]Sato D, Matsushima M. Preventive effects of urinary bladder tumors induced by N-butyl-N-(4-hydroxybutyl)-nitrosamine in rat by green tea leaves. Int J Urol. 2003: 10:160-6
[37]Rieger-Christ KM, Hanley R, Lodowsky C, et al. The green tea compound, (-)-epigallocatechin-3-gallate downregulates N-cadherin and suppresses migration of bladder carcinoma cells. Journal of Cellular Biochemistry. 2007: 102:377-88
[38]Chen WC, Hayakawa S, Shimizu K, Chien CT, Lai MK. Catechins prevents substance P-induced hyperactive bladder in rats via the downregulation of ICAM and ROS. Neurosci Lett. 2004: 367:213-7
[39]Ozcan A, Korkmaz A, Oter S, Coskun O. Contribution of flavonoid antioxidants to the preventive effect of mesna in cyclophosphamide-induced cystitis in rats. Arch Toxicol. 2005: 79:461-5
[40]Brown JE, Khodr H, Hider RC, Rice-Evans CA. Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties. Biochem J. 1998: 330 ( Pt 3):1173-8
[41]Agartan CA, Whitbeck C, Chichester P, Kogan BA, Levin RM. Effect of age on rabbit bladder function and structure following partial outlet obstruction. J Urol. 2005: 173:1400-5
[42]van de Weijer PH, Mattsson LA, Ylikorkala O. Benefits and risks of long-term low-dose oral continuous combined hormone therapy. Maturitas. 2007: 56:231-48
[43]Pickar JH, Yeh IT, Wheeler JE, Cunnane MF, Speroff L. Endometrial effects of lower doses of conjugated equine estrogens and medroxyprogesterone acetate: two-year substudy results. Fertil Steril. 2003: 80:1234-40
[44]Simon JA, Liu JH, Speroff L, Shumel BS, Symons JP. Reduced vaginal bleeding in postmenopausal women who receive combined norethindrone acetate and low-dose ethinyl estradiol therapy versus combined conjugated equine estrogens and medroxyprogesterone acetate therapy. Am J Obstet Gynecol. 2003: 188:92-9
[45]Carley ME, Rickard DJ, Gebhart JB, Webb MJ, Podratz KC, Spelsberg TC. Distribution of estrogen receptors alpha and beta mRNA in mouse urogenital tissues and their expression after oophorectomy and estrogen replacement. Int Urogynecol J Pelvic Floor Dysfunct. 2003: 14:141-5
[46]Zucchi EV, Sartori MG, Jarmy-Di Bella ZK, da Silva ID, Rodrigues de Lima G, Girao MJ. Expression of vascular endothelial growth factor in the lower urinary tract in rats after castration and estrogen administration. Menopause. 2006: 13:500-5
[47]Yoshida J, Aikawa K, Yoshimura Y, Shishido K, Yanagida T, Yamaguchi O. The effects of ovariectomy and estrogen replacement on acetylcholine release from nerve fibres and passive stretch-induced acetylcholine release in female rat bladder. Neurourol Urodyn. 2007: 26: 1050-5
[48]Sanchez-Ortiz RF, Wang Z, Menon C, DiSanto ME, Wein AJ, Chacko S. Estrogen modulates the expression of myosin heavy chain in detrusor smooth muscle. Am J Physiol Cell Physiol. 2001: 280:C433-40
[49]Lin AD, Levin RM, Kogan BA, et al. Alteration of contractile and regulatory proteins in estrogen-induced hypertrophy of female rabbit bladder. Urology. 2006: 68:1139-43
[50]Yager JD, Chen JQ. Mitochondrial estrogen receptors--new insights into specific functions. Trends Endocrinol Metab. 2007: 18:89-91
[51]Juan YS, Mannikarottu A, Kogan BA, et al. The effect of low-dose estrogen therapy on ovariectomized female rabbit bladder. Urology. 2008: 71:1209-13
[52]Juan YS, Levin RM, Chuang SM, et al. The beneficial effect of coenzyme Q10 and lipoic acid on obstructive bladder dysfunction in the rabbit. The Journal of urology. 2008: 180:2234-40
[53]Abrams P, Cardozo L, Fall M, et al. The standardisation of terminology of lower urinary tract function: report from the Standardisation Sub-committee of the International Continence Society. Neurourology and Urodynamics. 2002: 21:167-78
[54]Yoshida J, Aikawa K, Yoshimura Y, Shishido K, Yanagida T, Yamaguchi O. The effects of ovariectomy and estrogen replacement on acetylcholine release from nerve fibres and passive stretch-induced acetylcholine release in female rat bladder. Neurourology and Urodynamics. 2007: 26:1050-5
[55]Wang P, Luthin GR, Ruggieri MR. Muscarinic acetylcholine receptor subtypes mediating urinary bladder contractility and coupling to GTP binding proteins. J Pharmacol Exp Ther. 1995: 273:959-66
[56]Giglio D, Tobin G. Muscarinic receptor subtypes in the lower urinary tract. Pharmacology. 2009: 83:259-69
[57]Tong YC, Cheng JT. Alterations of M2,3-muscarinic receptor protein and mRNA expression in the bladder of the fructose fed obese rat. The Journal of Urology. 2007: 178:1537-42
[58]Braverman AS, Ruggieri MR, Sr. Muscarinic receptor transcript and protein density in hypertrophied and atrophied rat urinary bladder. Neurourology and Urodynamics. 2006: 25:55-61
[59]Braverman AS, Tallarida RJ, Ruggieri MR, Sr. Interaction between muscarinic receptor subtype signal transduction pathways mediating bladder contraction. Am J Physiol Regul Integr Comp Physiol. 2002: 283:R663-8
[60]Grunblatt E, Mandel S, Jacob-Hirsch J, et al. Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J Neural Transm. 2004: 111:1543-73
[61]Gerlach M, Double KL, Ben-Shachar D, Zecca L, Youdim MB, Riederer P. Neuromelanin and its interaction with iron as a potential risk factor for dopaminergic neurodegeneration underlying Parkinson''s disease. Neurotox Res. 2003: 5:35-44
[62]Schroeder EK, Kelsey NA, Doyle J, et al. Green tea epigallocatechin 3-gallate accumulates in mitochondria and displays a selective antiapoptotic effect against inducers of mitochondrial oxidative stress in neurons. Antioxid Redox Signal. 2009: 11:469-80
[63]Weinreb O, Mandel S, Youdim MB. Gene and protein expression profiles of anti- and pro-apoptotic actions of dopamine, R-apomorphine, green tea polyphenol (-)-epigallocatechine-3-gallate, and melatonin. Ann N Y Acad Sci. 2003: 993:351-61
[64]Mandel S, Grunblatt E, Youdim M. cDNA microarray to study gene expression of dopaminergic neurodegeneration and neuroprotection in MPTP and 6-hydroxydopamine models: implications for idiopathic Parkinson''s disease. J Neural Transm Suppl. 2000:117-24
[65]Mandel S, Weinreb O, Youdim MB. Using cDNA microarray to assess Parkinson''s disease models and the effects of neuroprotective drugs. Trends Pharmacol Sci. 2003: 24:184-91
[66]Lambert JD, Yang CS. Cancer chemopreventive activity and bioavailability of tea and tea polyphenols. Mutat Res. 2003: 523-524:201-8
[67]Kim S, Lee MJ, Hong J, et al. Plasma and tissue levels of tea catechins in rats and mice during chronic consumption of green tea polyphenols. Nutr Cancer. 2000: 37:41-8
[68]Chow HH, Cai Y, Hakim IA, et al. Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin Cancer Res. 2003: 9:3312-9
[69]Weinreb O, Mandel S, Amit T, Youdim MB. Neurological mechanisms of green tea polyphenols in Alzheimer''s and Parkinson''s diseases. The Journal of Nutritional Biochemistry. 2004: 15:506-16
[70]Lau FC, Shukitt-Hale B, Joseph JA. The beneficial effects of fruit polyphenols on brain aging. Neurobiology of Aging. 2005: 26 Suppl 1:128-32
[71]Vafeiadou K, Vauzour D, Spencer JP. Neuroinflammation and its modulation by flavonoids. Endocrine, Metabolic & Immune Disorders Drug Targets. 2007: 7:211-24
[72]Maher P, Akaishi T, Abe K. Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proceedings of the National Academy of Sciences of the United States of America. 2006: 103:16568-73
[73]Lamas S, Michel T, Collins T, Brenner BM, Marsden PA. Effects of interferon-gamma on nitric oxide synthase activity and endothelin-1 production by vascular endothelial cells. J Clin Invest. 1992: 90:879-87
[74]Cannon TW, Damaser MS. Effects of anesthesia on cystometry and leak point pressure of the female rat. Life Sciences. 2001: 69:1193-202
[75]Rodriguez LV, Wang B, Shortliffe LM. Structural changes in the bladder walls of pregnant and hormone-treated rats: correlation with bladder dynamics. BJU International. 2004: 94:1366-72
[76]Shapiro E, Becich MJ, Perlman E, Lepor H. Bladder wall abnormalities in myelodysplastic bladders: a computer assisted morphometric analysis. The Journal of Urology. 1991: 145:1024-9
[77]Landau EH, Jayanthi VR, Churchill BM, et al. Loss of elasticity in dysfunctional bladders: urodynamic and histochemical correlation. J Urol. 1994: 152:702-5
[78]Kang NS, Yim HE, Bae IS, et al. ACE inhibition modulates transforming growth factor-beta receptors in the young rat. Pediatr Nephrol. 2003: 18:865-71
[79]Klahr S, Morrissey J. Obstructive nephropathy and renal fibrosis. Am J Physiol Renal Physiol. 2002: 283:F861-75
[80]Bottinger EP, Bitzer M. TGF-beta signaling in renal disease. J Am Soc Nephrol. 2002: 13:2600-10
[81]Tipoe GL, Leung TM, Hung MW, Fung ML. Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection. Cardiovasc Hematol Disord Drug Targets. 2007: 7:135-44
[82]Giakoustidis AE, Giakoustidis DE, Koliakou K, et al. Inhibition of intestinal ischemia/repurfusion induced apoptosis and necrosis via down-regulation of the NF-kB, c-Jun and caspace-3 expression by epigallocatechin-3-gallate administration. Free Radic Res. 2008: 42:180-8
[83]Weinreb O, Mandel S, Youdim MB. cDNA gene expression profile homology of antioxidants and their antiapoptotic and proapoptotic activities in human neuroblastoma cells. Faseb J. 2003: 17:935-7
[84]Mandel S, Weinreb O, Amit T, Youdim MB. Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. Journal of Neurochemistry. 2004: 88:1555-69
[85]Mandel SA, Avramovich-Tirosh Y, Reznichenko L, et al. Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway. Neuro-Signals. 2005: 14:46-60
[86]Qanungo S, Das M, Haldar S, Basu A. Epigallocatechin-3-gallate induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells. Carcinogenesis. 2005: 26:958-67
[87]Mandel S, Youdim MB. Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radic Biol Med. 2004: 37:304-17
[88]Weinreb O, Amit T, Youdim MB. The application of proteomics for studying the neurorescue activity of the polyphenol (-)-epigallocatechin-3-gallate. Arch Biochem Biophys. 2008: 476:152-60
[89]Kim H, Kawazoe T, Han DW, et al. Enhanced wound healing by an epigallocatechin gallate-incorporated collagen sponge in diabetic mice. Wound Repair Regen. 2008: 16:714-20


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔