跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/24 06:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉皆岐
研究生(外文):Chieh-Chi Yeh
論文名稱:脊背橋隨機鋼索斷裂之易損性研究
論文名稱(外文):Fragility Curves of Extradosed Bridges with Random Cable Rupture
指導教授:陳冠雄陳冠雄引用關係許宗傑許宗傑引用關係
指導教授(外文):Kuan-Hsoung ChenChung-Chieh Hsu
口試委員:蔡榮根吳俊霖
口試日期:2012-06-03
學位類別:碩士
校院名稱:國立金門大學
系所名稱:土木與工程管理學系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:160
中文關鍵詞:脊背橋隨機鋼索斷裂易損曲線非線性歷時分析
外文關鍵詞:extradosed bridgesfragility curverandom cable rupturenonlinear time history analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本文研究目的為分析脊背橋鋼索隨機斷裂之易損曲線。並以台灣第一座脊背橋做為鋼索斷裂之易損研究之案例探討。模擬分析中,考慮橋塔、橋柱、鋼索之非線性行為,並考慮結構土壤互制之影響。文中針對現地量測週期與鋼索斷裂時間之實驗結果作為模擬分析比對分析,並考慮鋼索於不同時間斷裂,及鋼索不同時間斷裂之影響。最後根據隨機鋼索斷裂分析資料庫中,建立鋼索斷裂之橋塔、橋柱之易損曲線,以探討鋼索斷裂對橋梁損壞風險,做為橋梁安全補強之依據。
The objective of this research is to develop the fragility curves of extradosed bridges with random cable rupture. The first extradosed bridge constructed in Taiwan represents a typical case to achieve the corresponding fragility curves due to cable rupture. The nonlinear material properties of pylons, columns, cables and soil-structure interaction are incorporated in the analytical modeling. Field measurements of natural periods and tests in cable tension rupture are used to calibrate the analytical models. The effects of pretensions in cables, time lag in multi-cable rupture, random locations and various numbers of cables have a comprehensive investigation. The fragility curves of pylons and columns are constructed with various damages. This fragility curves can be implemented to mitigate the anticipated cable rupture risk and to improve the bridge safety with an adequate retrofit scheme.
中文摘要 ………………………………………………………………………… i
英文摘要 ………………………………………………………………………… ii
誌謝 ………………………………………………………………………… iii

目錄 ………………………………………………………………………… iv

表目錄 ………………………………………………………………………… vi

圖目錄 ………………………………………………………………………… vii

符號表 ………………………………………………………………………… xii

第一章 緒論…………………………………………………………………… 1
1.1 研究動機與目的……………………………………………………… 1
第二章 文獻回顧……………………………………………………………… 2
2.1 橋梁破壞之形式……………………………………………………… 2
2.2 鋼索瞬間斷裂………………………………………………………… 3
2.3 動態土壤參數模擬…………………………………………………… 4
2.4 基樁與土壤互制模擬………………………………………………… 10
第三章 橋形之概述…………………………………………………………… 11
3.1 脊背橋之相關幾何尺寸……………………………………………… 11
3.2 鋼索之配置形式……………………………………………………… 13
3.3 橋面板之概述………………………………………………………… 14
3.4 橋塔之造型…………………………………………………………… 14
第四章 脊背橋之模擬………………………………………………………… 16
4.1 鋼索之動力特性………..…………………………………………… 16
4.2 橋塔與橋柱之模擬…………………………………………………… 25
4.3 橋面板之模擬………………………………………………………… 27
4.4 非線性塑鉸元素……………………………………………………… 29
4.5 基礎之模擬…………………………………………………………… 32
4.5.1 基樁之模擬…………………………………………………………… 32
4.5.2 基樁與土壤互制 ………………………………………………… 32
第五章 動態反應分析………………………………………………………… 39
5.1 橋梁之振態分析……………………………………………………… 39
5.1.1 鋼索未斷裂…………………………………………………………… 39
5.1.2 鋼索斷裂……………………………………………………………… 46
5.2 鋼索瞬間斷裂時間…………………………………………………… 51
5.3 預拉力之影響………………………………………………………… 56
5.4 鋼索斷裂之影響因素………………………………………………… 58
5.5 動力放大因子………………………………………………………… 83
5.6 非線性塑鉸反應……………………………………………………… 91
5.7 基礎與土壤互制行為………………………………………………… 97
第六章 易損曲線之探討……………………………………………………… 100
6.1 最大似然法…………………………………………………………… 100
6.2 易損曲線……………………………………………………………… 106
第七章 結論與建議…………………………………………………………… 116
7.1 結論與建議…………………………………………………………… 116
7.2 本研究之獨特性與貢獻……………………………………………… 118
參考文獻 …………………………………………………………………….…... 119
附錄一 ………………………………………………………………………… 124
附錄二 ………………………………………………………………………… 134








英文文獻
[1]Akihiro Takahashi, M.ASCE, Hideki Sugita, Shunsuke Tanimoto. Beam on Winkler foundation method for piles in laterally spreading. Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground (GSP 145).Proceedings of a Workshop.
[2]American Society of Civil Engineers (ASCE). FEMA-356—Prestandard and commentary for the seismic rehabilitation of buildings, Washington, DC, 2000.
[3]Anagnostopoulos, S.A. (1972).Nonlinear dynamic and ductility repuiremants of building structures subjected to earthquakes. Res.Rep.No.R72-54, Dept. of Civil Engrg Maassachusetts Inst. of Technology, Cambridge, Ma.
[4]Ang, A. S. and Tang, W. H.(2007), Probability Concepts in Engineering John Wiley & S H-ons Inc., p. 251-254.
[5]Applied Technology Council, 1996, Improved Seismic Design Criteria for California
[6]Bhatti M. Asghar. (2006). Advanced Topics in Finite Element Analysis of Structures: With Mathematica and MATLAB Computations. Wiley, 1 edition .January 3, 2006.Bridges: Provisional Recommendations.ATC-32.
[7]Chau K.T., Shen C.Y., Guo X. (2009). Nonlinear seismic soil–pile–structure interactions: Shaking table tests and FEM analyses. Soil Dynamics and Earthquake Engineering 29 (2009) 300–310.
[8]CSI Analysis Reference Manual for SAP2000.Computers and Structures.Inc.2009.
[9]Das, Braja M., Ramana, G.V. (2010).PRINCIPLES OF SOIL DYNAMICS (Second Edition).
[10]Eurocode 3. (2006). Design of steel structures, Design of structures with tension components. EN 1993-1-11, 2006.
[11]Gimsing NJ (1983). Cable supported bridges, concept and design. John Wiley and Sons, 1983.
[12]Hogg Robert V, Tanis Elliot A. (2009). Probability and Statistical Inference (8th Edition).Hwa Tai Publishing.
[13]Jingzhe Zheng & Tetsuo Takeda. (1995). Effects of soil-structure interaction on seismic response of PC cable-stayed bridge. Soil Dynamics and Earthquake Engineering 14 (1995) 427-437.
[14]John Aldrich. (1997). R.A. Fisher and the making of maximum likelihood 1912-1922. Statistical Science.1997, Vol. 12, No. 3, 162-176
[15]Kennedy R. P., Cornell C. A., Campbell R. D., Kaplan S., and Perla H. F., (1980),Probabilistic Seismic Safety Study of an Existing Nuclear Power Plant, Nuclear Engineering and Design No.59, pp315-338.
[16]Makris, N., Tazoh, T., Yun, X., and Fill, A. (1997). Prediction of the measured response of a scaled soil-pile-superstructure system. Soil Dynamics and Earthquake Engineering 16 (1997) 113-124.
[17]Mehrdad Sasani (2008). Response of a reinforced concrete infilled-frame structure to removal of two adjacent columns. Engineering Structures 30 (2008) 2478–2491.
[18]Mitropoulou Chara Ch, Papadrakakis Manolis. Developing fragility curves based on neural network IDA predictions. Engineering Structures 33 (2011) 3409–3421.
[19]Montgomery, D. C. and G. C. Runger (2011), Applied Statistics and Probability for Engineers John Wiley & Sons (Asia) Pte Ltd, p. 239-243.
[20]Mozos CM, Aparicio AC. (2010). Parametric study on the dynamic response of cable stayed bridges to the sudden failure of a stay, Part I: Bending moment acting on the deck. Engineering Structures 32 (2010) 3288_3300.
[21]Mozos CM, Aparicio AC. (2011). Numerical and experimental study on the interaction cable structure during the failure of a stay in a cable stayed bridge. Engineering Structures 33 (2011) 2330–2341.
[22]Naresh Bellana. (2009). Shear Wave Velocity as Function of SPT Penetration Resistance and Vertical Effective Stress at California Bridge Sites, A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Civil and Environmental Engineering. University of California, Los Angeles.
[23]Park, Y. and Ang, A. H. (1985). Mechanistic seismic damage model for reinforced concrete. Journal of Structural Engineering 111(4), 722-739.
[24]Post-Tensioning Institute (2007). Recommendations for stay cable design, testing and installation. 5th edition, Cable-Stayed Bridges Committee. Phoenix: PTI.
[25]Priestley M. J. N., Seible, F., Calvi G. M., (1996). Seismic Design and Retrofit of Bridges. John Wiley & Sons, New York.
[26]Shinozuka M, Feng MQ, Lee J. (2000).Naganuma T. Statistical analysis of fragility curves. J Eng Mech 2000; 126(12):1224–31.
[27]Starossek, U. (2007). Typology of progressive collapse Engineerin Structures, Volume 29, Issue 9, September 2007, Pages 2302-2307.
[28]Sukhen Chatterjee. (2003).The Design of Modern Steel Bridges (Second Edition). Blackwell Science Ltd, a Blackwell Publishing Company.
[29]Takeda, T., Sozen, M.A., and Nielsen, N.N., (1970), "Reinforced Concrete Response to Simulated Earthquakes", Journal of Structural Engineering, ASCE, Vol. 96, No. 12, pp. 2557-2573.
[30]Thai Huu-Tai, Kim Seung-Eock.Nonlinear static and dynamic analysis of cable structures. Finite Elements in Analysis and Design 47 (2011) 237–246.
[31]Tomlinso, M.J. (2004).PILE DESIGN and CONSTRUCTION PRACTICE. Published by E & FN Spon, an imprint of Chapman & Hall, 2–6 Boundary Row, London SE1 8HN, UK.
[32]Weon-Keun Song & Seung-Eock Kim (2007).Analysis of the overall collapse mechanism of cable-stayed bridges with different cable layouts. Engineering Structures 29 (2007) 2133–2142.
[33]Wolff, M. & Starossek, U. (2008). Robustness assessment of a cable-stayed bridge. Proceedings, 4th International Conference on Bridge Maintenance, Safety, and Management (IABMAS’08), Seoul, Korea, July 13-17, 2008.
[34]Wolff, M. & Starossek, U. (2010). Cable-loss analyses and collapse behavior of cable-stayed bridges. IABMAS2010, The Fifth International Conference on Bridge Maintenance, Safety and Management, July 11-15, 2010, Philadelphia, USA.
[35]Yan, D., Chang, C.C. (2010).Vulnerability assessment of single-pylon cable-stayed bridges using plastic limit analysis. Engineering Structures 32 (2010) 2049_2056.

中文文獻
[1]中興國道6號南投段工程處(2008),國道6號南投段脊背式橋樑專輯:愛蘭交流道聯絡道南港溪橋 ,交通部台灣區國道新建工程局。
[2]李錫堤、蔡璧嬬(2007),臺灣地區深度30公尺平均剪力波速度推估,國立中央大學應用地質研究所。
[3]吳偉特(1985),土壤動力學與大地工程,地工技術雜誌,第9期,pp.5-19。
[4]石仲維 (2009),脊背橋動態反應之量測與分析,國立交通大學土木工程研究所,碩士論文,指導教授黃炯憲。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top