跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/02 14:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李穎亮
研究生(外文):Ying-Liang Li
論文名稱:影像處理技術於混凝土結構裂縫自動化偵測
論文名稱(外文):Applications of Image Processing Techniques to Automated Detection of Cracks in Concrete Structures
指導教授:蘇東青蘇東青引用關係
指導教授(外文):Tung-Ching Su
口試委員:楊明德劉霈洪集輝
口試委員(外文):Ming-Der YangPei LuJi-Hwei Horng
口試日期:2012.06.21
學位類別:碩士
校院名稱:國立金門大學
系所名稱:土木與工程管理學系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:79
中文關鍵詞:混凝土裂縫偵測電腦視覺影像分割形態特徵敏感度分析
外文關鍵詞:Concrete crack detectionComputer visionImage segmentationMorphological featuresSensitivity analysis
相關次數:
  • 被引用被引用:7
  • 點閱點閱:645
  • 評分評分:
  • 下載下載:167
  • 收藏至我的研究室書目清單書目收藏:0
目前主要公共設施大多為混凝土結構,因此定期進行結構設施安全檢
測,取得準確結構物健康資訊甚為重要。目前混凝土結構檢測大多以檢測
人員目視檢測方式進行,然而有時人工檢測顯得無效率且不安全,如進行
高塔建築或橋面版底部檢測。因此,電腦視覺技術已逐漸應用發展結構物
檢測系統,試著取代人工檢測方式以獲得結構物健康資訊。結構物檢測系
統主要針對混凝土結構裂縫進行檢測,然而大多數以影像處理技術所發展
的檢測系統,並未能自動偵測影像是否顯示裂縫。目前亦有文獻針對裂縫
偵測準確度進行研究,然而最佳偵測準確度僅介於68.7%~76.5%。本研究
為提升結構裂縫偵測準確度至80%甚至90%以上,提出新的影像分割方法
萃取裂縫形態,該方法相關技術包括:加權中值濾波、數學形態學斷開運
算、影像相加、影像二值化、形態特徵(包括:面積、扁平率)計算等。所
分割出的影像區域可能包含裂縫與非裂縫,因此依據形態特徵利用敏感度
分析法找出最適裂縫偵測準則,依據準則進行裂縫偵測測試。本研究利用
100 張混凝土路面影像、50 張建築物影像作為實驗材料,其中100 張路面
影像為訓練樣本,其餘50 張建築物影像則為測試樣本。實驗結果顯示最
佳訓練準確度為90%;最佳測試準確度則為76%。
Most important civil infrastructures are made of concrete, so accurate information by
routine inspection is necessary for structure maintenance. Currently most infrastructure
inspections are implemented by inspectors. However, sometimes manual inspection would be
inefficient and unsafe while the inspections of skyscraper or substructure of bridge are
executed. In last decade, image-based techniques were applied to crack detection and
measurement for concrete structures, such as principal component analysis, co-occurrence
matrix, wavelet analysis, and statistical texture. However, the present detection accuracy
between 68.7 and 76.5% is unsatisfied for practice applications. This research proposes a
morphology-based image processing technique to attempt to automatically detect cracks in
concrete structures. The morphology-based image processing technique consisting of
weighted median filter, image opening operation, and image segmentation was used to
transform the grey images of concrete structure into the binary images. To segment the image
regions of complete crack from a noisy environment, two critical morphological features
including area and eccentricity were measured for each segmented image region. Then, a
sensitivity analysis based on the measured morphological features was applied to determine
the appropriate criteria for crack detection. In this thesis, 100 images of the concrete roads and
50 ones of the concrete buildings were acquired to be the training and testing samples,
respectively. The experimental result indicates that the optimal training and testing accuracies
are 90% and 76%, respectively.
目錄
摘要 ................................................. i
Abstract ................................................. ii
致謝 ................................................. iii
目錄 ................................................. vi
表目錄 ................................................. vii
圖目錄 ................................................. viii
第一章 緒論............................................ 1
1.1 研究動機......................................... 3
1.2 研究目的......................................... 4
1.3 研究範圍......................................... 7
第二章 文獻回顧........................................ 8
2.1 裂縫檢測......................................... 8
2.1.1 裂縫檢測方式..................................... 8
2.1.2 裂縫檢測頻率..................................... 9
2.1.3 混凝土結構裂縫檢測............................... 9
2.2 應用影像處理技術於裂縫偵測....................... 11
2.3 裂縫形態特徵萃取................................. 12
2.4 敏感度分析於決策準則之應用....................... 13
第三章 研究方法........................................ 14
3.1 影像灰階化....................................... 16
3.2 加權中值濾波處理................................. 16
3.2.1 中央加權中值法................................... 17
3.2.2 k×k 中央加權中值濾波器.......................... 18
3.3 形態處理......................................... 22
3.3.1 斷開運算......................................... 23
3.3.2 加法運算......................................... 26
3.3.3 二值化........................................... 26
3.3.4 形態特徵計算..................................... 28
3.4 建立裂縫準則..................................... 30
第四章 研究成果........................................ 32
4.1 影像取得......................................... 32
4.2 影像濾波結果..................................... 35
4.3 影像形態處理結果................................. 40
4.3.1 影像斷開......................................... 40
4.3.2 影像相加......................................... 40
4.3.3 影像二值化....................................... 40
4.4 建立裂縫準則..................................... 42
4.5 裂縫偵測結果..................................... 49
第五章 結論與建議...................................... 53
5.1 結論............................................ 53
5.2 建議............................................ 54
參考文獻 ............................................... 55
附錄一 100 張混凝土影像................................. 61
附錄二 50 張建築物影像.................................. 70
附錄三 論文口試意見回覆表............................... 75
參考文獻
英文文獻
Abdel-Qader, I., Pashaie-Rad, S., Abudayyeh, O., Yehia, S., 2006. PCA-Based algorithm for unsuperised bridge crack detection, Advances in Engineering Software, Vol. 37, No. 12, pp. 771-778.
Barazzetti, L., Scaioni, M., 2009. Crack measurement: Development, testing and applications of an automatic image-based algorithm, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 64, No. 3, pp. 285-296.
Bernstone, C., Heyden, A., 2009. Image analysis for monitoring of crack growth in hydropower concrete structures, Measurement, Vol. 42, No. 6, pp. 878-893.
Chiang, C.W., Das, S.K., Shih, Y.F., Liao, H.S., Nee J.B., 2011. Comparison of CALIPSO and ground-based lidar profiles over Chung-Li, Taiwan, Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 112, No. 2, pp. 197-203. Gomes, H.M., Silva, N.R.S., 2008. Some comparisons for damage detection on structures using genetic algorithms and modal sensitivity method, Applied Mathematical Modelling, Vol. 32, No. 11, pp. 2216-2232.
Gonzalez, R.C., Woods, R.E., 2007. Digital Image Processing. 3rd Education, Prentice Hall. Gonzalez, R.C., Woods, R.E., Eddins, S.L., 2003. Digital Image Processing USING MATLAB, Pearson Prentice Hall.
Iyer, S., Sinha, S.K., 2005. A robust approach for automatic detection and segmentation of cracks in underground pipeline images, Image and Vision Computing, Vol. 23, No. 10, pp. 921-933.
Kabir, S., 2010. Imaging-based detection of AAR induced map-crack damage in concrete structure, NDT&E International, Vol. 43, No. 6, pp. 461-469.
Kabir, S., Rivard, P., He, D.C., Thivierge, P., 2009. Damage assessment for concrete structure using image processing techniques on acoustic borehole imagery, Construction and Building Materials, Vol. 23, No. 10, pp. 3166-3174.
Karabacak, V., Altunel, E., Cakir, Z., 2011. Monitoring aseismic surface creep along the North Anatolian Fault (Turkey) using ground-based LIDAR, Earth and Planetary Science Letters, Vol. 304, No. 1-2, pp. 64-70.
Ko, S.J., Lee, Y.H., 1991. Center Weighted Median Filters and Their Applications to Image Enhancement, IEEE Transactions on Circuits and Systems, Vol. 38, No. 9. pp. 984-993.
Litorowicz, A., 2006. Identification and quantification of cracks in concrete by optical fluorescent microscopy, Cement and Concrete Resharch, Vol. 36, pp. 1508-1515.
Lju, Q.R., Tan, Q., April. 2005. Concrete Crack Detection Based on Image Processing, Journal of Wuhan University of Technology, Vol. 27, No. 4.
Mészáros, Cs., Rapcsák, T., 1996. On sensitivity analysis for a class of decision systems, Decision Support Systems, Vol. 16, No. 3, pp. 231-240.
Naseralavi, S.S., Fadaee, M.J., Salajegheh, J., 2011. Subset solving algorithm: A novel sensitivity-based method for damage detection of structures, Applied Mathematical Modelling , Vol. 35, No. 5, pp. 2232-2252.
Oh, J.K., Giho, J., Oh, S., Lee, J.H., Yi, B.J., Moon, Y.S., Lee, J.S., Choi, Y., 2009. Bridge inspection robot system with machine vision, Automation in Construction, Vol. 18, No. 7, pp. 929–941.
Perroy, R.L., Bookhagen, B., Asner, G.P., Chadwick, O.A., 2010. Comparison of gully erosion estimates using airborne and ground-based LiDAR on Santa Cruz Island, California, Geomorphology, Vol. 118, No. 3-4, pp. 288-300.
Quek, S.T., Wang, Q., Zhang, L., Ang, K.K., 2001. Sensitivity analysis of crack
detection in beams by wavelet technique, International Journal of Mechanical Sciences, Vol. 43, No. 12, pp. 2899-2910.
Ravalico, J.K., Maier, H.R., Dandy, G.C., 2009. Sensitivity analysis for decision-making using the more method — A Pareto approach, Reliability Engineering & System Safety, Vol. 94, No. 7, pp. 1229-1237.
Shih, F.Y., 2010. Image Processing and Pattern Recognition, Wiley, New Jersey.
Sinha, S.K., Fieguth, P.W., 2006. Automated detection of cracks in buried concrete pipe images, Automation in Construction, Vol. 15, No. 1, pp. 58-72.
Sinha, S.K., Fieguth, P.W., 2006. Segmentation of buried concrete pipe images, Automation in Construction, Vol. 15, No. 1, pp. 47-57.
Tung, P.C., Hwang, Y.R., Wu, M.C., 2002. The development of a mobile manipulator imaging system for bridge crack inspection, Automation in Construction, Vol. 11, No. 6, pp. 717-729.
Van der Zande, D., Stuckens, J., Verstraeten, W.W., Mereu, S., Muys, B., Coppin, P., 2011. 3D modeling of light interception in heterogeneous forest canopies using ground-based LiDAR data, International Journal of Applied Earth Observation and Geoinformation, Vol. 13, No. 5, pp. 792-800.
Wendt, P.D., Coyle, E.J., Gallagher, N.C., Jr., 1986. Stack filter, IEEE Trans. Acoust. Speech Signal Process, Vol. 34, No. 4, pp. 898-911.
Yam, L.H., Li, Y.Y., Wong, W.O., 2002. Sensitivity studies of parameters for damage detection of plate-like structures using static and dynamic approaches, Engineering Structures, Vol. 24, No. 11, pp. 1465-1475.
Yan, H., 1996. Unified formulation of a class of image thresholding techniques, Pattern Recognition , Vol. 29, No. 12, pp. 2025-2032.
Yang, M.D., Su, T.C., 2009. Segmenting ideal morphologies of sewer pipe defects on
CCTV images for automated diagnosis, Expert Systems with Applications , Vol. 36, No. 2, pp. 3562-3573.
Yang, M.D., Su, T.C., Pan, N.F., Yang, Y.F., 2011. Systematic image quality assessment for sewer inspection, Expert Systems with Applications, Vol. 38, No. 3, pp. 1766-1776.
Yang, R., Gabbouj, M., Neuvo, Y., 1995. Fast algorithms for analyzing and designing weighted median filters , Signal Processing, Vol. 41, No. 2, pp. 135-152.
Yao, T., Yang, X.Y., Zhao, F., Wang, Z.S., Zhang, Q.L., Jupp, D., Lovell, J., Culvenor, D., Newnham, G., Ni-Meister, W., Schaaf, C., Woodcock, C., Wang, J., Li, X. W., Strahler, A., 2011. Measuring forest structure and biomass in New England forest stands using Echidna ground-based lidar, Remote Sensing of Environment, Vol. 115, No. 11, pp. 2965-2974.
Yli-Harja, O., Astola, J., Neuvo, Y., 1991. Analysis of the properties of median and weighted median filters using threshold logic and stack filter representation, IEEE Trans. Acoust. Speech Signal Process, Vol. 39, No. 2, pp. 395-410.
Yu, S.N., Jang, J.H., Han, C.S., 2007. Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel, Automation in Construction, Vol. 16, No. 3, pp. 255-261.
Zhang, J., Sha, A.M., Sun, Z.Y., Gao, H.G., Mar. 2008. Pavement Crack Automatic Recognition Based on Phase-grouping Method, China Journal of Highway and Transport, Vol. 21, No. 2.
Zhu, Z., German, S., Brilak, I., 2010. Detection of large-scale concrete columns for automated bridge inspection, Automation in Construction, Vol. 19, pp. 1047-1055.

中文文獻
王圳木、蘇榮基、賴素玲,2009,影像處理技術在體適能檢測的應用,弘光人文社會學報,第11期,第111-140頁。
王健權,2001,以數位影像處理搭配動態攝影機做即時人臉追蹤之研究,國立成功大學電機工程學系,碩士論文。
吳文長,1997,應用影像分析探討瀝青混凝土中孔隙對滲透性之影響,國立成功大學土木工程研究所,碩士論文。
吳建達,2010,透地雷達應用於水壩混凝土檢測技術之研究,逢甲大學土木工程學系,碩士論文。
李有豐,2000,非破壞檢測與評估,橋梁檢測評估與維修人員訓練講習班論文集, 7-1~7-61,交通部運輸研究所。
李宜隆,1995,應用影像解析儀探討砂土組構,國立中央大學土木工程研究所,碩士論文。
李長青,2005,線掃瞄式照相機應用於鋪面破壞影像調查之研究,國立中央大學土木工程研究所,碩士論文。
唐欣原,2009,應用影像處理技術實現TFT-LCD卡匣層數位置偵測,國立台灣科技大學自動化及控制研究所,碩士論文。
交通部台灣區國道高速公路局,2011,高速公路養護手冊。
陳永民,2009,以數位影像處理進行乳癌之自動診斷及預後分析,國立嘉義大學資訊工程學系,碩士論文。
陳慶昌,2006,影像自動化為組裝工廠之發展,國立成功大學械工程學系,碩士論文。
彭朋畿,2008,放射線應用於鋼筋混凝土結構物之檢測,國立中央大學土木工程學系,博士論文。
黃忠信、郭文毅,1997,影像分析於混凝土工程之應用,混凝土工程技術研討會論文集。
詹皇祥,2001,近景數化影像半自動式混凝土裂縫量測,國立中央大學土木工程研究所,碩士論文。
廖子凱,1994,影像處理應用於鋪面破壞辨識之研究,國立台灣大學土木工程研究所,碩士論文。
劉名昱,1995,混凝土之裂縫,水利,第五期,第131-136頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top