跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/16 22:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡佳憲
研究生(外文):Chia-Hsien Tasi
論文名稱:水熱法合成二氧化鈦結構應用於染料敏化太陽能電池
論文名稱(外文):Hydrothermal Synthesis Titanium Dioxide Structure and its Application to Dye-Sensitized Solar Cell
指導教授:林俊良林俊良引用關係
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:75
中文關鍵詞:二氧化鈦染料敏化太陽能電池水溶液法
外文關鍵詞:TiO2dye-sensitized solar celllow temperature aqueous solution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:849
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用低溫水溶液法製備染料敏化太陽能電池之二氧化鈦電極,首先以射頻磁控濺鍍(RF sputter)法將二氧化鈦晶種層沉積於FTO玻璃基板上,作為成長一維二氧化鈦之成核層,再經由不同成長時間,探討不同晶種層厚度對於對一維二氧化鈦結構之影響。再藉由低溫水溶液法於鍍有二氧化鈦晶種層成長一維二氧化鈦結構,所使用的反應物為四釘氧基鈦Titanium(IV) butoxide混合水溶液。探討不同製程參數對薄膜之晶體結構、表面微結構及光學特性等影響,最後製作成染料敏化太陽能電池,研究染料敏化太陽能電池之特性。
首先以X光繞射儀(XRD)、場發射掃描式電子顯微鏡(FE-SEM)及能量散射光譜儀(EDS)分析晶種層之形貌及其成份含量,由結果可以得知利用射頻磁控濺鍍法所沉積之薄膜成分為二氧化鈦。當晶種層厚度為100 nm,水溶液溶度為1M時,藉由控制反應成長時間與不同後熱處理,製備出高寬比之一維陣列,使工作電極獲得有效最大的吸附面積。透過XRD的分析,不同後熱處理溫度所成長一維二氧化鈦奈米結構均沿著c軸(002)平面為優選取向且呈現Rutile結晶相。經SEM結果得知,隨著退火溫度的增加,二氧化鈦奈米結構分佈越均勻與緻密。再由UV-VIS光譜儀分析後得知,隨著一維二氧化鈦長度增加,其穿透率隨之降低。另外在太陽能電池之特性方面,當一維二氧化鈦長度為2.5um時,DSSC封裝效率可到達3.14 %。


The main purpose in this study is dye-sensitized solar cells (DSSC) that synthesized TiO2 nanorods on photoelectrode. First, the TiO2 seed layer was deposited on FTO structure by the RF sputtering system to study the effect of TiO2 nanorods. The effect of different growth time on TiO2 seed layers have investigated in this study. Second, after the growth seed layer, the FTO substrate with seed layer is immerging in aqueous solution with low temperature, which the aqueous solution of Titanium(IV) butoxide was prepared. The designed TiO2 nanorods were formed by controlling experimental conditions, including seed-layer, process time, solution concentration and temperature. Finally, the DSSC was assembled,and the short-circuit photocurrent; the open-circuit photovoltage, and the power conversion efficiency of DSSC were measured using a I-V measurement system.
From XRD,Fe-SEM and EDS result shown that the seed layer composition is TiO2. Control annealing temperature and growth time to get the best aspect ratio of nanorods array, that the electrode can obtain improvement effective absorption areas. The XRD spectra show that TiO2 nanorods array were preferred orientation along the c-axis of (002) plane with rutile phases after annealing. UV-vis transmittance spectra of TiO2 nanorod arrays, the transmittance slightly reduces due to the extremely long length of these nanorods.The dye sensitized solar cell conversion efficiency of 3.14% was obtained for nanorod arrays with 2.5μm lengths.


摘要-------------------------------------------------------i
Abstract-------------------------------------------------iii
誌謝-------------------------------------------------------v
目錄------------------------------------------------------vi
表目錄-----------------------------------------------------x
圖目錄----------------------------------------------------xi
第一章 緒論-----------------------------------------------1
1.1 前言---------------------------------------------------1
1.2 太陽能電池簡介及種類-----------------------------------2
1.2.1 單結晶矽太陽能電池-----------------------------------4
1.2.2 多結晶矽太陽能電池-----------------------------------4
1.2.3 非結晶矽太陽能電池-----------------------------------4
1.2.4 銅銦鎵二硒太陽能電池---------------------------------5
1.2.5 有機蕭特基型太陽能電池-------------------------------5
1.2.6 有機 P-N 異質結型太陽能電池--------------------------6
1.2.7 染料敏化太陽能電池-----------------------------------6
1.3 研究動機-----------------------------------------------9
第二章 理論與文獻回顧------------------------------------10
2.1 電漿原理----------------------------------------------10
2.1.1濺鍍(Sputtering)-------------------------------------11
2.1.2反應性濺鍍(Sputtering)-------------------------------12
2.1.3磁控濺鍍(Magnetron sputtering)-----------------------13
2.1.4直流濺鍍(DC sputtering)------------------------------13
2.1.5沉積現象---------------------------------------------14
2.2二氧化鈦(titanium dioxide, TiO2)-----------------------16
2.2.1二氧化鈦晶體結構-------------------------------------17
2.2.2二氧化鈦光催化氧化反應機制---------------------------19
2.3水熱法( Hydrothermal method )--------------------------21
2.3.1水熱法之反應機制-------------------------------------22
2.3.2水熱法之優點-----------------------------------------22
2.4染料敏化太陽能電池 (DSSC) 工作原理---------------------23
2.4.1染料敏化太陽能電池 (DSSC) 組成結構-------------------26
2.4.2 TiO2 工作電極---------------------------------------26
2.4.3染料-------------------------------------------------26
2.4.4電解質-----------------------------------------------27
2.4.5對電極-----------------------------------------------28
2.4.6 DSSC 電壓電流輸出特性-------------------------------29
第三章 實驗方法與步驟------------------------------------31
3.1 實驗藥品與儀器----------------------------------------32
3.2實驗架構-----------------------------------------------33
3.3 DSSC正電極層製備--------------------------------------37
3.4 TiO2水熱法製備二氧化鈦結構----------------------------39
3.5元件封裝-----------------------------------------------39
3.6分析與量測儀器-----------------------------------------41
3.6.1 X光繞射分析儀(XRD)----------------------------------41
3.6.2光學性質 (UV-visible) 分析---------------------------43
3.6.3 FE – SEM 分析--------------------------------------45
3.6.4光電轉換量測系統-------------------------------------47
第四章 結果與討論----------------------------------------48
4.1 TiO2 薄膜之 SEM圖與厚度分析---------------------------48
4.2水熱法經由不同酸性水溶液濃度所成長之TiO2奈米結構
SEM 表面型態圖-----------------------------------------49
4.3水熱法成長TiO2結構與FTO基板上之EDS量測-----------------51
4.4水熱法成長不同濃度TiO2結構於FTO基板上之XRD量測---------52
4.5水熱法不同成長時間TiO2結構於FTO基板上之SEM觀察---------53
4.6不同長度之TiO2 結構薄膜段燒 XRD 圖---------------------56
4.7光學性質吸收率分析-------------------------------------61
4.8光學性質穿透分析---------------------------------------63
4.9 DSSC 光電轉換效率量測---------------------------------65
第五章 結論----------------------------------------------67
參考文獻--------------------------------------------------69


[1]彭淮夫 “中孔性二氧化鈦薄膜於染料敏化太陽能電池之應用”,國立東華大學化學研究所碩士論文,2004
[2]M. A. Green,K. Emery,D. L. King at “Solar cell efficiency tables (version 29)”,pron. Photovoltaics 15,35 (2007)
[3]Westphalen M, Kreibig U, Rostalski J, et al. ” Metal cluster enhanced organic solar cells,” Solar Energy Materials & Solar Cells 61 ( 2000) 97.
[4]Tang C W. ” Two-layer organic photovoltaic cell,” Appl Phys Lett, 48 (1986) 183.
[5]H. Tsubomura ; M. Matsumura ; Y. Nomura and T. Amamiya, Nature 261 (1976) 402.
[6]M. Grätzel, Inorg. Chem. 44 (2005) 6841.
[7]Zhong-Sheng Wang ; Masatoshi Yanagida ; Kazuhiro Sayama and Hideki Sugihara, Chem. Mater. 18 (2006) 2912-2916.
[8]“Handook of photovoltaic science and engineering,edited“ by A. Luque and S. Hegedus (John wiley & Sons Ltd., 2003).
[9]Soler cell :materials, manufacture and operation,edited by T. Markcart and L. Castaner (Elsevier Ltd., 2005).
[10]V. Ramamurthy and K. S. Schanze,“Semiconductor photochemistry and photophysics”, (Marcel Dekker, Inc., 2003).
[11]A. Solbrand, H. Lindstrom, H. Rensmo et al,“Electron transport in the nanostructured TiO2-electrolyte system studied with time-resolved photocurrents”,(1997).
[12]N.Kopidakis, E. A. Schiff, N. G. park et al, “Ambipolar diffusion of photocarriers in electrolyte-filled,nanoporous TiO2”, (2000)
[13]S. NaKade, W. kubo, Y. Saito et al,“ Influence of measurement conditions on electron diffusion in nanoporous TiO2 films: Effects of bias light and dye adsorption”,(2003)
[14]H. G. Agrell, G. Boschloo, and A. Hagfeldt,“Conductivity studies of nanostructured TiO2 films permeated with electrolyte”, (2004)
[15]N. A. Anderson, X. Ai, and T. Q. ,“Lian, Electron injection dynamics from Ru polypyridyl complexes to ZnO nanocrystalline thin films”,(2003).
[16]N.A. Anderson and T. Lian,“Ultrafast electron injection from metal polyyridyl complexes to metal-oxide nanocrystalline thin films”, (2004)
[17]R. Katoh, A. Furube, A. V. Barzykin et al,“Kinetics and mechanism of electron injection and charge recombination in dye-sensitized nanorystalline semiconductors”, (2004)
[18]Pratical bombardment effects on thin-films deposition, D. M. Mattox,(1989)
[19]Technology, W. D. Westwood,“Reactive Sputter Deposition Handbook of plasma Processing”,(1992)
[20]M. Harsdorff ,“Thin influence of charged point defects and contamination of substrate surface on nucleation”, (1984)
[21]莊達人,“VLSI 製造技術”,高立圖書股份有限公司, (1995)
[22]M. A. Fox, M. Y. Dulay, “Heterogeneous Photocatalysis” Chem. Rev. 93 (1993) 341-357.
[23]A. L. Linsebigler, G. Lu, J. T. Yates, “Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results” Chem. Rev. 95 (1995) 735-758.
[24]M. R. Hoffmann, S. T. Martin, W. Choi et al., “Environmental Applications of Semiconductor Photocatalysis” Chem. Rev. 95 (1995) 69-96.
[25]K.-I. Iuchi, Y. Ohko, T. Tatsuma, A. Fujishima, “Cathode-Separated TiO2 Photocatalysts Applicable to a Photochromic Device Responsive to Backside Illumination” Chem. Mater. 16 (2004) 1165-1167.
[26]A. Fujishima, T. N. Rao, D. A. Tryk, “Titanium dioxide photocatalysis” J. of Photochemistry and Photobiology C:Photochemistry Rev. 1 (2000) 1-21.
[27]Y. Ohko, K. Hashimoto, and A. Fujishima, “Kinetics of photocatalytic reactions under extremely low-intensity UV illumination on titanium dioxide thin films” J. Phys. Chem. A 101 (1997) 8057-8062.
[28]M. Sadeghi, W. Liu, T-G. Zhang, P. Stavropoulos, and B. Levy, “Role of Photoinduced Charge Carrier Separation Distance in Heterogeneous Photocatalysis:Oxidative Degradation of CH3OH Vapor in Contact with Pt/TiO2 and Cofumed TiO2/Fe2O3” J. Phys. Chem. 100 (1996)
[29]H. Nagayama,H. Honda and H. kawahala,J. “Electrochem”.(1998)
[30]Deki,Y. Aoi, O. Hiroi and A. Kajinami, Chem. Lett25, 433 (1996)
[31]S. Yamabi and H. Imai,Chem. Lett. 30,220 (2001)
[32]S. Yamabi and H. Imai,Chem. Lett. 14,609 (2002)
[33]K. Tsukuma, Akiyama and Imai,J. Non-Cryst. Solid.210,48(1997)
[34]M. Izaki and O. Shinohara,Adv. Mater. 13,142 (2001)
[35]J. Nelson, Science Vol. August .293 (2001) 10.
[36]A. Hagfeldt, M. Grätzel, Chem. Rev. 95 (1995) 49-68.
[37]M. Grätzel, “Current Opinion in Colloid & Interface Science 94” (1999) 314-321.
[38]B. O''Regan and M. Grätzel, Nature 353 (1991) 737-740.
[39]M. Grätzel, Nature 414 (2001) 338-344.
[40]M. Grätzel, J. Photochem. and Photobio. A:Chem. 164 (2004) 3-14.
[41]A. Hagfeldt and M. Grätzel, Chem. Rev. 95 (1995) 49-68.
[42]K. Kalyanasundaram and M. Grätzel, Coord. Chem. Rev. 177 (1998) 347-414.
[43]M. Grätzel, “Current Opinion in Colloid and Interface Science 4” (1999) 314-321.
[44]Cahen et al., J.Phys.Chem. B 104 (2000) 2053-2059.
[45]Craig A. Grimes, “Vertically Alingned Sigle Crystal TiO2 Nanowire Arrays grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications” (2008)
[46]A. Fujishima et al., Sol. Energy Mater. Sol. Cells 81(2004) 197-203.
[47]呂怡萱,” 應用於染料敏化太陽能電池之二氧化鈦薄膜與粉末製程及其特性研究”,國立中央大學化學研究所碩士論文,2006。
[48]M. Grätzel, “Sol-Gel Processed TiO2 Films for Photovoltaic Applications”, Journal of Sol-Gel Science and Technology 22 (2001) .
[49]Jih-Jen Wu* and Chi-Chung Yu,“Aligned TiO2 Nanorods and Nanowalls”, LETTERS, 10.1021/jp0361935, 2004.
[50](Sheng-Yuan Chua) and Te-Yi Chen, “Deposition of preferred-orientation ZnO films on the ceramic substrates and its application for surface acoustic wave filters”, J. Vac. Sci. Technol. A 22.4,2004.
[51]Jinting Jiu, Seiji Isoda, Fumin Wang, and Motonari Adachi,“Dye-Sensitized Solar Cells Based on a Single-Crystalline TiO2 Nanorod Film”, J. Phys. Chem.,10.1021/jp055824n, 2005.
[52]Yoshinori Ohsaki,a Naruhiko Masaki,c Takayuki Kitamura,a Yuji Wada,a Takumi Okamoto,b Toru Sekino,b Kohichi Niiharab and Shozo Yanagida*c, “Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization”,PCCP, 2 0 0 5 , 7 , 4 1 5 7 – 4 1 6 3,2005.
[53]Mohammad K. Nazeeruddin, Filippo De Angelis, Simona Fantacci, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers”,JACS, 10.1021/ja052467l,2005.
[54]opal K. Mor, Karthik Shankar, Maggie Paulose, Oomman K. Varghese, and Craig A. Grimes,“Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells”, 10.1021/nl052099j,2005.
[55]Maggie Paulose, Karthik Shankar, Oomman K Varghese,Gopal K Mor, Brian Hardin and Craig A Grimes, “Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes”, NANOTECHNOLOGY, Nanotechnology 17 (2006) 1446–1448,2006.
[56]Bing Tan and Yiying Wu,“Dye-Sensitized Solar Cells Based on Anatase TiO2 Nanoparticle/Nanowire Composites”, 10.1021/jp063972n,2006.
[57]Ana M. Peiro´,a Punniamoorthy Ravirajan,bc Kuveshni Govender,d David S. Boyle,d Paul O’Brien,d Donal D. C. Bradley,b Jenny Nelsonb and James R. Durranta, “Hybrid polymer/metal oxide solar cells based on ZnO columnar structures”, J. Mater. Chem., 2006, 16, 2088–2096,2006.
[58]Naoki Koide, Ashraful Islam , Yasuo Chiba, Liyuan Han, “Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit”, ELSEVIER, Chemistry 182 (2006) 296–305,2006.
[59]Seok-In Na, Seok-Soon Kim, Woong-Ki Hong, Jeong-Woo Park, Jang Jo,Yoon-Chae Nah, Takhee Lee, Dong-Yu Kim, “Fabrication of TiO2 nanotubes by using electrodeposited ZnO nanorod template and their application to hybrid solar cells”, ELSEVIER, Electrochimica Acta 53 (2008) 2560–2566,2007.
[60]Patrick Brown, Kensuke Takechi, and Prashant V. Kamat*, “Single-Walled Carbon Nanotube Scaffolds for Dye-Sensitized Solar Cells”, 0.1021/jp7107472,2007.
[61]Xinjian Feng, Karthik Shankar, Oomman K. Varghese, Maggie Paulose, Thomas J.Latempa, and Craig A. Grimes,“Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications”,NANO LATTERS, Vol. 8, No. 11 3781-3786,2008.
[62]Seigo Ito, Takurou N. Murakami 1, Pascal Comte 1, Paul Liska 1, Carole Grätzel 1,Mohammad K. Nazeeruddin 1, Michael Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%”, ELSEVIER,Thin Solid Films 516 (2008) 4613–4619, 2008
[63]PatchareeCharoensirithavorn a, YuheiOgomi b, TakashiSagawa a, ShuziHayase b, SusumuYoshikawa a, “A facileroutetoTiO2 nanotubearraysfordye-sensitizedsolarcells” ,ELSEVIER, Journal of Crystal Growth, 2008
[64]V. Thavasi ,*, V. Renugopalakrishnan ,c, R. Jose , S. Ramakrishna, “Controlled electron injection and transport at materials interfaces in dye sensitized solar cells”, ELSEVIER, Materials Science and Engineering R 63 (2009) 81–99,2008.
[65]Guozhen Shen,* Po-Chiang Chen, Koungmin Ryu and Chongwu Zhou*,“Devices and chemical sensing applications of metal oxide nanowires” APPLICATION, J. Mater. Chem., 2009, 19, 828–839,2008.
[66]Bin Liu and Eray S. Aydil*, “Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells”, JACS, 10.1021/ja8078972,2008
[67]Sung UkLee a, WonSeokChoi b, ByungyouHong a,n, “A comparative study of dye-sensitized solar cells added carbon nanotubes to electrolyte and counter electrodes” ELSEVIER, Solar Energy Materials & Solar Cells 94 (2010) 680–685, 2009
[68]Jung Gyu Nam,a,b Young Jun Park,b Bum Sung Kimc,* and Jai Sung Leea, “Enhancement of the efficiency of dye-sensitized solar cell by utilizing carbon nanotube counter electrode”, ELSEVIER, Scripta Materialia 62 (2010) 148–150,2009.
[69]Yuxiang Li a, Min Guo a, Mei Zhang a, Xidong Wangb*, “Hydrothermal synthesis and characterization of TiO2 nanorod arrays on glass substrates”, ELSEVIER, Materials Research Bulletin 44 (2009) 1232–1237,2009.
[70]Brian E. Hardin1,2, Eric T. Hoke1, Paul B. Armstrong3, Jun-Ho Yum2, Pascal Comte2, Toma’s Torres4, Jean M. J. Fre’chet3, Md Khaja Nazeeruddin2, Michael Gra‥tzel2 and Michael D. McGehee1* “Increased light harvesting in dye-sensitized solar cells with energy relay dyes”, ARTILOES, DOI: 10.1038/NPHOTON.2009.96,2009.
[71]Hoda S. Hafez, “Synthesis of highly-active single-crystalline TiO2 nanorods and its application in environmental photocatalysis”, ELSEVIER, doi:10.1016/j.matlet.2009.03.057,2009.
[72]Akshay Kumar, Anuj R. Madaria, and Chongwu Zhou*, “Growth of Aligned Single-Crystalline Rutile TiO2 Nanowires on Arbitrary Substrates and Their Application in Dye-Sensitized Solar Cells”, 10.1021/jp100491h,2010.
[73]Robert A. Sayer Stephen L. Hodson Timothy S. Fisher, “Improved Efficiency of Dye-Sensitized Solar Cells Using a Vertically Aligned Carbon Nanotube Counter Electrode”, Journal of Solar Energy Engineering, MAY 2010, Vol. 132 / 021007-1,2010.
[74]Hao Pana, Jieshu Qianb, Ang Yua, Meigui Xua, Luo Tua, Qingli Chaia, Xingfu Zhoua, “TiO2 Wedgy Nanotubes Array Flims for Photovoltaic Enhancement”, ELSEVIER, doi:10.1016/j.apsusc.2011.01.021,2011.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊