跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/18 23:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張至安
研究生(外文):Chih-An Chang
論文名稱:微波氫/氮電漿退火的製程壓力與功率對氧化鋅共摻雜鎵鋁薄膜的光/電/微結構特性的影響
論文名稱(外文):Dependence of Process Pressure and Power in Microwave Hydrogen / Nitrogen Plasma Annealing on Electrical, Optical and Microstructure Properties of Gallium and Aluminum Co-doped Zinc Oxide Film
指導教授:張慎周
指導教授(外文):Shang-Chou Chang
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:124
相關次數:
  • 被引用被引用:2
  • 點閱點閱:740
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗製備GAZO薄膜基板溫度為室溫進行微波氫/氮電漿退火與微波氫電漿退火後處理,改變微波電漿功率為200 W、400 W、600 W,氣體壓力分別為10 Torr、15 Torr、20 Torr、25 Torr,處理時間固定為10 min。後續由X-ray繞射觀察薄膜晶格結構,掃描式電子顯微鏡(SEM)、觀察薄膜表面微結構,霍爾量測其電性,光譜儀量測光穿透率,光致螢光光譜和拉曼光譜,探討微波氫/氮電漿退火與微波氫電漿退火的機制是否相同,或能得到其薄膜更好的微結構與光電特性。
實驗結果發現微波氫/氮電漿退火電漿功率為400 W、氣體壓力為20 Torr時,獲得最低電阻率為7.17×10-4 Ω-cm,且退火前後電阻率下降48%。藉由光譜儀量測穿透率,在微波氫/氮電漿退火電漿功率為400 W、壓力25 Torr時,可見光範圍的平均光穿透率達到98 %。而當微波氫/氮電漿退火隨功率增加到600 W、氣體壓力25 Torr,因為給予能量過強,導致薄膜結構晶格扭曲,因此電性變差。從拉曼光譜中發現微波氫/氮電漿隨著氣體壓力增加時,E2(High) 振動模式隨之變弱,但A1(LO)的振動模式反而變強。從以上結果得知,加入氮氣後,有助於氫原子密度及熱能增加,因此微波氫/氮電漿會比未處理及微波氫電漿相同條件處理後得到更多額外的能量,使得GAZO薄膜的光電為結構特性有所改善。


This work describes gallium and aluminum doped zinc oxide (GAZO) films with unheated substrate during sputtering were post treated microwave hydrogen/nitrogen plasma annealing with different microwave powers of 200 W、400 W、600 W, and different microwave process pressures of 10 Torr、15 Torr、20 Torr、25 Torr. Electrical, optical and microstructure properties of GAZO films were measured by hall measurement, optical spectrometer, X-ray diffractometer, scanning electron microscope, photoluminescence meter and raman spectrpmeter respectively.
The results indicate the GAZO films post treated with 400W, 25 torr microwave hydrogen/nitrogen plasma annealing can have the electrical resistivity of 7.17×10-4Ω-cm and average optical transmittance of 96 %.


頁數
中文摘要 i
英文摘要 iii
致謝 iv
總目錄 v
圖目錄 ix
表目錄 xv

第一章緒論 1
1.1前言 1
1.2相關文獻回顧 5
第二章理論基礎 9
2.1透明導電膜介紹 9
2.1.1透明導電膜之光性質 9
2.1.2透明導電膜之電性質 10
2.1.3透明導電膜歷史 12
2.2氧化鋅材料特性介紹 13
2.3柏斯坦-摩斯(Burstein-Moss)效應 14
2.4電漿 15
2.5濺鍍原理 16
2.6薄膜成長 17
2.7薄膜表面型態結構 19
2.8微波氫氣電漿機制 21
2.9拉曼散射機制 27
第三章實驗方法與步驟 28
3.1實驗流程 28
3.2實驗材料 30
3.3濺鍍基板清洗 30
3.4濺鍍GAZO薄膜 31
3.4.1真空濺鍍系統 31
3.4.2連續式濺鍍 33
3.5後製程系統與參數說明 35
3.5.1後製程腔體 35
3.5.2真空退火 36
3.5.3微波氫氣電漿退火 37
3.6 薄膜特性分析 38
3.6.1膜厚分析儀器 38
3.6.2 X-ray 繞射分析 39
3.6.3掃描式電子顯微鏡 40
3.6.4霍爾電性分析 41
3.6.5光譜分析 42
3.6.6螢光光譜分析 43
3.6.7拉曼光譜分析 44
第四章結果與討論 45
4.1製程垂直式基板持續在室溫下-後續微波電漿功率維持200 W,後處理10分鐘,改變氣體種類(純氫、氫氣/氮氣比例 1:1),及氣體壓力(10 Torr、15 Torr、20 Torr、25 Torr) 45
4.1.1薄膜結構分析 45
4.1.2薄膜表面分析 49
4.1.3薄膜電性分析 53
4.1.4薄膜光學分析 56
4.1.5光電性質綜合比較 61
4.1.6討論 62
4.1.7薄膜PL分析 66
4.1.8薄膜拉曼光譜分析 68
4.2製程垂直式基板持續在室溫下-後續微波電漿功率維持400 W,後處理10分鐘,改變氣體種類(純氫、氫氣/氮氣比例 1:1),及氣體壓力(10 Torr、15 Torr、20 Torr、25 Torr) 70
4.2.1薄膜結構分析 70
4.2.2薄膜表面分析 74
4.2.3薄膜電性分析 78
4.2.4薄膜光學分析 81
4.2.5光電性質綜合比較 86
4.2.6討論 87
4.2.7薄膜PL分析 91
4.2.8薄膜拉曼光譜分析 93
4.3製程垂直式基板持續在室溫下-後續微波電漿功率維持600 W,後處理10分鐘,改變氣體種類(純氫、氫氣/氮氣比例 1:1),及氣體壓力(10 Torr、15 Torr、20 Torr、25 Torr) 95
4.3.1薄膜結構分析 95
4.3.2薄膜表面分析 99
4.3.3薄膜電性分析 103
4.3.4薄膜光學分析 106
4.3.5光電性質綜合比較 111
4.3.6討論 112
4.3.7薄膜PL分析 116
4.3.8薄膜拉曼光譜分析 118
第五章結論 120
參考文獻 121


[1]Roy G. Gordon, “Criteria for Choosing Transparent Conductors”, Mrs Bulletin/August (2000).
[2]Chun-Ku Chen, Ta-Chin Wei, Lance R Collins and Jonathan Phillips, “Modelling the discharge region of a microwave generated hydrogen plasma”, J. Phys. D: Appl. Phys. 32 (1999) 688–698.
[3]吳振銘, “低加熱速率退火改善直線式連續濺鍍氧化鋅共摻雜鎵鋁薄膜光電特性”, 崑山科技大學電機工程研究所碩士論文, (2010).
[4]Z.G. Zhanga, F. Zhoua, X.Q. Weib, M. Liub, G. Sunb, C.S. Chenb, C.S. Xueb,H.Z. Zhuangb, B.Y. Manb, “Effects of oxygen pressures on pulsed laser deposition of ZnO films”, Physica E 39 (2007) 253–257.
[5]陳柏佑, “低壓氫退火改善直流濺鍍氧化鋅摻鋁薄膜特性”, 崑山科技大學電機工程研究所碩士論文, (2009).
[6]Joondong Kim , Ju-Hyung Yun, Sang-Won Jee, Yun Chang Park, Minkyu Ju, Seokkyu Han, Youngkuk Kim, Jae-Hyun Kim, Wayne A. Anderson, Jung-Ho Lee, Junsin Yi, “Rapid thermal annealed Al-doped ZnO film for a UV detector”, Materials Letters 65 (2011) 786–789.
[7]Se Hun Park, Ji Bong Park, Pung Keun Song, “Characteristics of Al-doped, Ga-doped and In-doped zinc-oxide films as transparent conducting electrodes in organic light-emitting diodes”, Current Applied Physics 10 (2010) S488–S490
[8]Fang-Hsing Wang, Hung-Peng Chang, Chih-Chung Tseng, Chia-Cheng Huang, Han-Wen Liu,“Influence of hydrogen plasma treatment on Al-doped ZnO thin films for amorphous silicon thin film solar cells”, Current Applied Physics 11 (2011) S12 - S16
[9]H.W. Kim, N.H. Kim, “Structural studies of room-temperature RF magnetron sputtered ZnO films under different RF powered conditions” ,Materials Science and Engineering B103 (2003) 297–302.
[10]J.-H. Bang , “Effects of additive gases and plasma post-treatment on electrical propertiesand optical transmittance of ZnO thin films”, Thin Solid Films 519 (2010) 1568–1572.
[11]Tadatsugu Minami, “Transparent conducting oxide semiconductors for transparent electrodes” ,Semicond. Sci. Technol. 20 (2005) S35–S44.
[12]W. Li , “Effects of substrate temperature on the properties of facing-target sputtered Al-doped ZnO films”, Solar Energy Materials & Solar Cells 91 (2007) 659–663.
[13]V. Assunc, “New challenges on gallium-doped zinc oxide films prepared by r.f.magnetron sputtering” ,Thin Solid Films 442 (2003) 102–106.
[14]Jiang , “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices” , Appl. Phys. Lett. 83 (2003) 9.
[15]L. Raniero , “Role of hydrogen plasma on electrical and optical properties of ZGO,ITO and IZO transparent and conductive coatings” ,Thin Solid Films 511– 512 (2006) 295–298.
[16]G. J. Exarhos, S. K. Sharmu, “Influence of processing variables on the structure and properties of ZnO films”, Thin Solid Films 270 (1995) 27-32.
[17]L.N. Wang, L.Z. Hu, H.Q. Zhang , Y. Qiu, Y. Lang, G.Q. Liu, J.Y. Ji, J.X. Ma, Z.W. Zhao, “Studying the Raman spectra of Ag doped ZnO films grown by PLD”, Materials Science in Semiconductor Processing 14 (2011) 274–277.
[18]Young Ran Park , Juho Kim , Young Sung Kim, “Effect of hydrogen doping in ZnO thin films by pulsed DC magnetron sputtering”, Applied Surface Science 255 (2009) 9010–9014.
[19]Young Ran Park , Donggeun Jung, Ki-Chul Kim, Su Jeong Suh, Tae Seok Park, Young Sung Kim, “Physical properties of transparent conducting indium doped zinc oxide thin films deposited by pulsed DC magnetron sputtering”, J Electroceram 23 (2009) 536–541.
[20]Shang-Chou Chang, “Low-pressure H2/N2 annealing on indium tin oxide film”, Microelectronics Journal 38 (2007) 1220–1225.
[21]S. Bochel, J. Amorim, G. Baravian, A. Ricard, and P. Stratil, “A Spectroscopic Study of Active Species in DC and HF Flowing Discharges in N2-H2 and Ar-N2-H2Mixtures.”, Plasma Sources Sci. Technol. 5 (1996) 567.
[22]Chris G. Van de Walle.“Hydrogen as a Cause of Doping in Zinc Oxide”, Physical Review Letters 85 (2000) 5.
[23]F.-H. Wang, “Influence of hydrogen plasma treatment on Al-doped ZnO thin flms for amorphous silicon thin film solar cells”, Current Applied Physics 11 (2010) S12-S16.
[24]Meng-Chi Li, Chien-Cheng Kuo, Sheng-Hui Chen, and Cheng-Chung Lee“Optical and electric properties of aluminum-gallium doped zinc oxide for transparent conducting film” ,Thin Film Solar Technology, edited by Alan E. Delahoy, Louay A. Eldada, Proc. of SPIE Vol. 7409.
[25]Y.M. Hu , “Dependences of the Al thickness and annealing temperature on the structural,optical and electrical properties in ZnO/Al multilayers” ,Thin Solid Films 497 (2006) 130– 134.
[26]H.P. Chang , “Enhanced conductivity of aluminum doped ZnO films by hydrogen plasma treatment” ,Thin Solid Films 518 (2010) 7445–7449.
[27]張存續,“材料與微波之頻率響應與反應特性”,工業材料雜誌,第216期(2004) 81-87.
[28]Tadatsugu Minami, “Transparent conducting oxide semiconductors for transparent electrodes”, Semicond. Sci. Technol. 20 (2005) S35–S44.
[29]楊明輝, “透明導電膜”, 藝軒圖書出版社, (2006)。
[30]B. Szyszka, “Development of new transparent conductors and device applications utilizing a multidisciplinary approach” Thin Solid Films 518 (2010) 3109–3114.
[31]P. Nunes, “Performances presented by zinc oxide thin films deposited by r.f. magnetron sputtering” ,Vacuum 64 (2002) 293–297.
[32]T.Y. Ma, “Effects of rapid thermal annealing on the morphology and electrical properties of ZnOyIn films”, Thin Solid Films 410 (2002) 8–13.
[33]S. Mandal , “Optical and structural characteristics of ZnO thin films grown by rf magnetron sputtering”, Materials Research Bulletin 43 (2008) 244–250.
[34]Sookjoo Kim, “Influence of substrate temperature and oxygen/argon flow ratioon the electrical and optical properties of Ga-doped ZnO thin films prepared by rf magnetron sputtering” ,Cryst. Res. Technol. 41 (2006) 1194 – 1197.
[35]Sookjoo Kim, “Dependence of the resistivity and the transmittance of sputterdeposited Ga-doped ZnO films on oxygen partial pressure and sputtering temperature”,J Mater Sci 42 (2007) 4845–4849.
[36]Jungwoo Kang , “Electrical Resistivity and Transmittance Properties of Al- and Ga-codoped ZnO Thin Films”, Journal of the Korean Physical Society 56 (2010) 576-579.
[37]陳皇岐,“氫電漿處理改善氧化鋅共摻雜鎵鋁薄膜光電特性”,崑山科技大學電機工程系碩士論文,(2009)。
[38]Kyoo-Ho Kim and Eric Arifin, “The Effect of Gallium Concentration and Substrate Temperature on the Properties of Ga-Doped ZnO Thin Films Sputtered from Powder Compacted Target”, Metals Andmaterials International 13 (2007) 489-494.
[39]S. Jang and W. Lee, “Pressure and Input Power Dependence of Ar/N2H2 Inductively Coupled Plasma Systems.”, J Vac. Sci. Technol. A 19 (2001) 2335.
[40]Yaodong Liu, Jianshe Lian,“Optical and electrical properties of aluminum-doped ZnO thin films grown by pulsed laser deposition”, Applied Surface Science 253 (2007) 3727–3730
[41]Dong Zhang , Changzheng Wang , Fengxia Zhang,“Oxygen pressure and measurement temperature dependence of defects related bands in zinc oxide films”, Vacuum 85 (2010) 160e163.
[42]X. Zhu, H. Wu, Z. Yuan, J. Kong,W.Shen, “Multiphonon resonant Raman scattering in N-doped ZnO”, J. Raman Spectrosc. 40 (2009) 2155.
[43]J. H. Yang, J. H. Zheng, H. J. Zhai, L. L. Yang, “Low temperature hydrothermal growth and optical properties of ZnO nanorods”, Cryst. Res. Technol. 44 (2009) 87.
[44]Y. Tong, Y. Liu, C. Shao,Y. Liu, C. Xu,J. Zhang,Y. Lu, D. Shen and X. Fan, “Growth and Optical Properties of Faceted Hexagonal ZnO Nanotubes ”, J. Phys. Chem. B 110 (2006) 14714.
[45]M. Tzolov, N. Tzenov, D. Dimova-Malinovska, M. Kalitzova, C. Pizzuto,G. Vitali, G. Zollo, I. Ivanov, “Vibrational properties and structure of undoped and Al-doped ZnO films deposited by RF magnetron sputtering”, Thin Solid Films 379 (2000) 28-36.
[46]S.K. Sharma, G.J. Exarhos, “Raman Spectroscopic Investigation of ZnO and Doped ZnO Films, Nanoparticles and Bulk Material at Ambient and High Pressures”, Solid state phenomena 55 (1997) 32.
[47]X.H. Zhang,Y.C. Liu,X.H. Wang, S.J.C hen, G.R. Wang, J.Y. Zhang, Y.M. Lu, D.Z. Shen and X.W. Fan, “Structural properties and photoluminescence of ZnO nanowalls prepared by two-step growth with oxygen-plasma-assisted molecular beam epitaxy”, J. Phys.: Condens. Matter 17 (2005) 3035.
[48]H. S. Bae ea.al, “Mobility Enhancement in ZnO-Based TFTs by H Treatment”, Electrochemical and Solid Letters 7 (2004) 279-281.P.2.
[49]Yuxiu Sun et.al, “Reverse microemulsion -directed synthesis of hydroxyapatite nanoparticles under hydrothermal conditions “, Journal of Physics and Chemistry of Solids 68 (2007) 373-377.
[50]林天財,黃文鋒,王政堯,柯博仁,蘇良慶,張慎周,王炳聰, “氫退火處理與氫電漿處理對ZnO:Mo 薄膜之特性比較”, NSC 99-2622-E-168 -002 -CC3.
[51]白木 靖寬,吉田 貞史, “薄膜工程學” 全華科技圖書股份有限公司,(2004)。
[52]B. Zhang, “Preparation and characterization of tantalum-doped indiumtin oxide films deposited by magnetron sputtering”,Scripta Materialia 58 (2008) 203–206.
[53]李鴻賓, “利用原子力顯微鏡之區域陽極氧化技術製作氧化鋅薄膜電晶體”, 大同大學光電工程研究所碩士論文, (2010)
[54]胡志強, “使用後處理改善直線式連續濺鍍氧化鋅共摻雜鎵鋁薄膜光電特性”, 崑山科技大學電機工程研究所碩士論文, (2010)
[55]W. Li , “Effects of substrate temperature on the properties of facing-target sputtered Al-doped ZnO films” ,Solar Energy Materials & Solar Cells 91 (2007) 659–663.
[56]吳冠德, ”奈米電化學與自聚單分子浸筆微影術研究”, 南台科技大學碩士論文,(2004).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top