(3.235.191.87) 您好!臺灣時間:2021/05/14 21:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:吳秉彥
研究生(外文):Wu Bing-Yan
論文名稱:運用雙壓電風扇於板鰭式散熱器之熱傳特增益研究
論文名稱(外文):A Study of Enhanced Heat Transfer for a Plate-Fin Heat Sink by Operating Two Piezoelectric Fans
指導教授:艾和昌艾和昌引用關係
指導教授(外文):Herchang Ay
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:應用工程科學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:101
畢業學年度:100
語文別:中文
論文頁數:75
中文關鍵詞:壓電風扇板鰭式散熱器發光二極體紅外線熱像儀熱阻
外文關鍵詞:Piezoelectric FanPlate-fin Heat SinkLEDInfrared ThermovisionThermal resistance
相關次數:
  • 被引用被引用:2
  • 點閱點閱:981
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:1
電子元件朝向輕薄短小之微小化與密集化的趨勢發展,單位面積的發熱量越來越高,散熱已成為重要的研究課題。壓電風扇具有體積小、輕薄、運作音量低、功率消耗低等特點,可運於微小型電子元件之散熱,以取代傳統的軸流式風扇。
本研究以中波紅外線熱像儀可視化量測技術,壓電風扇以110V、60Hz驅動,固定壓電風扇震幅範圍,運用LED為加熱源,以探討板鰭式散熱器之散熱增益。雙壓電風扇以同反向擺動方式,壓電風扇設於板鰭式散熱器側邊z/h為0.5、0.63、0.75、0.88、1之高度,並改變雙壓電風扇間距P/L為0.24、0.36、0.59、0.77,以分析比較板鰭式散熱器之自然對流及單雙壓電風扇強制對流之散熱增益。
實驗結果顯示,雙壓電風扇涵蓋鰭片面積比單壓電風扇大,可有效的將空氣導入鰭片內部散熱,熱阻之提升可達40.91%;在雙壓電風扇反向擺動下,相對於自然對流散熱增益達77.39%。當雙壓電風扇反向擺動,散熱效益隨壓電風扇置於板鰭式散熱器側邊高度(z/h=0.5、0.75、1)之增加而提升。反向雙壓電風扇擺動之散熱增益優於同向擺動,其值增益只有1.9%。本研究改變不同參數的實驗中,以雙壓電風扇反向擺動,P/L=0.77、z/h=0.5之熱阻值為2.128℃/W最低,相對具有較高的散熱效益。
The Electronic components toward the development of light, thin, short, small, to minimize the components and intensive. The heat flux for unit area of each components is getting better. The piezoelectric fan has the characteristics of small size, ultra-light, low volume and low consume of work. It can substitute the traditional axis fan and placed on the micro electric component for cooling application. This study used the flow visualization technique (Middle Wave Infrared), driven by 110V, 60Hz at the fix amplitude range of piezoelectric fan. The LED uses as the heat source to enhanced the heat performance of the plate-fin heat sink. It is focus on the two piezoelectric fan at side of plate-fin heat sink with height (z/h=0.5, 0.63, 0.75, 0.88, 1), changed pitch of two piezoelectric fans (P/L=0.24, 0.36, 0.59, 0.77) and two way of swing (in-phase, out-of-phase). The nature convection of plate-fin heat sink and heat transfer enhancement of two piezoelectric fans will be discussed.
From experimental results showed, the area of two piezoelectric fans is bigger than single piezoelectric fan in the same heat flux, it can push the air into inner of plate-fin effectively for heat performance rises to 40.91%. The heat performance can be enhanced to 77.39% when the blade of two piezoelectric fan acting in the opposite direction compare to the nature convection. When the two piezoelectric fans are acting in the opposite direction and placed at the side of plate-fin sink, the heat performance will increase follow by the plate-fin heat sink height increase at z/h=0.5, 0.75. In two swing way, out-of phase heat transfer is better than in-phase, the enhance is 1.9%. When the two piezoelectric fans of P/L=0.77 and z/h=0.5, the thermal resistance is 2.128℃/W. The result shows the edge of plate-fin heat sink atz/h=0.5, the heat transfer efficiency rises effectively.
摘要 i
ABSTRACT ii
致謝 iii
圖目錄 vi
表目錄 viii
符 號 說 明 ix
第一章 緒論 1
1.1前言 1
1.2研究動機 1
1.3文獻回顧 3
1.3.1流場可視化 3
1.3.2熱傳性能 5
1.4研究目的與方法 7
第二章 理論模式建立與分析 12
2.1 LED發光原理 12
2.1.1 LED封裝型式 12
2.2 壓電材料特性介紹 13
2.2.1 壓電材料種類 14
2.2.2 壓電效應 15
2.2.3 機電偶合因子 15
2.2.4 機械品質因子 15
2.2.5 頻率常數 16
2.2.6 居禮溫度 16
2.2.7功率消耗 16
2.3紅外線測溫 17
2.3.1紅外線輻射偵測原理 17
2.3.2黑體放射 18
2.3.3紅外線量測相關參數 19
2.4散熱器之熱傳相關理論 21
2.4.1熱傳導 21
2.4.2熱對流 22
2.4.3熱阻 22
2.4.4熱傳增益 23
第三章 實驗設備與流程 27
3.1實驗設備 27
3.1.1環境控制箱 27
3.1.2 LED 27
3.1.3紅外線熱像儀 27
3.1.4 溫度量測裝置 28
3.1.5 壓電風扇 28
3.1.6交流電源供應器 28
3.1.7高速攝影機 29
3.2測試件模型 29
3.3實驗方法 30
3.3.1 LED熱傳率(Q)計算 30
3.3.2紅外線熱像儀設定方式 30
3.3.3放射率的求取 32
3.3.4 實驗參數 32
3.3.5實驗步驟 33
第四章 結果與討論 46
4.1單雙壓電風扇熱傳增益 46
4.2 紅外線熱像儀拍攝位置差異 47
4.2.1 紅外線熱像儀拍攝散熱器側邊溫度變化 47
4.2.2紅外線熱像儀拍攝側邊與鰭片面熱阻值影響 47
4.3熱傳增益驗證 48
4.4雙壓電風扇對板鰭式散熱器熱傳增益 49
4.4.1 雙壓電風扇同向擺動,側邊間距位置與高度之熱阻比較 49
4.4.2 雙壓電風扇反向擺動,側邊間距位置與高度之熱阻比較 49
4.5 雙壓電風扇同反向擺動熱阻比較 50
第五章 結論 60
5.1結論 60
5.2未來展望 61
參考文獻 62
個人簡歷 66
[1]E. R. Meinders, and K. Hanjalic, 1999, “Vortex Structure and Heat Transfer in Turbulent Flow over a Wall-Mounted Matrix of Cubes”, International Journal of Heat and Fluid Flow, Vol. 20, pp.255-267.
[2]C. H. Huang, J. J Lu, and H. Ay, 2010, “A Three-Dimensional Heat Sink Module Design Problem with Experimental Verification”, International Journal of Heat and Mass Transfer, Vol. 31,pp. 1482-1492.
[3]Y. H. Kim, S. T. Wereley, and C. H. Chun, 2004, “Phase-resolved Flow Field Produced by a Vibrating Cantilever Plate Between Two Endplates”, Physics of Fluids, Vol. 16, pp. 145–162.
[4]J. H. Chen and H. Ay, 2004, “Fluid-Dynamic Diagnostics on Interior Flow Patterns of Heat Sink Using PIV System”, National Kaohsiung University of Applied Sciences, Master of Science, Taiwan.
[5]Y. Y. Lin and H. Ay, 2006, “Heat Transfer Characteristics of Heat Sink Using Infrared Thermovision Under Force Convection”, National Kaohsiung University of Applied Sciences, Master of Science, Taiwan.
[6]M. Kimber, K. Suzuki, N. Kitsunai, K. Seki, and S. V. Garimella, 2009, “Pressure and Flow Rate Performance of Piezoelectric Fans”, IEEE Transactions on Components and Packaging Technologies, Vol. 32, pp. 766-755.
[7]M. K. Abdullah, M. V. Ramana, C. Y. Khor, K. A. Ahmad, M. A. Mujeebu, Y. Ooi, and Z. M. Ripin, 2009, “Numerical and Experimental Investigations on Effect of Fan Height on The Performance of Piezoelectric Fan in Microelectronic Cooling”, International Communications in Heat and Mass Transfer, Vol. 36, pp. 51–58.
[8]P. S. Chen, 2010, “Design and Analysis of Piezoelectric Fan of Temperature Control System”, National Kaohsiung University of Applied Sciences, Master of Science, Taiwan.
[9]J. H. Yoo, and J. I Hong, W. Cao, 2000, “Piezoelectric Ceramic Bimorph Coupled to Thin Metal Plate as Cooling Fan for Electronic Devices”, Sensors and Actuators, Vol. 79, pp. 8–12.
[10]M. Toda, 1979, “Theory of Air Flow Generation by a Resonant Type PVF2 Bimorph Cantilever Vibrator”, Ferroelectrics, Vol. 22, pp. 911-918.
[11]S. F. Liu, R. T. Huang, W. J. Sheu, and C. C. Wang, 2009, “Heat Transfer by A Piezoelectric Fan on A Flat Surface Subject to the Influence of Horizontal/Vertical Arrangement”, International Journal of Heat and Mass Transfer, Vol. 52, pp. 2565–2570.
[12]S. M. Wait, S. Basak, S. V. Garimella, and A. Raman, 2007, “Piezoelectric Fans Using Higher Flexural Modes for Electronics Cooling Applications”, IEEE Transactions on Components and Packaging Technologies, Vol. 30, pp. 119-128.
[13]T. Acikalin, 2002, “Numerical Simulation of Fluid Flow Generated by a Piezoelectric Fan Vibrating in Its First Mode”, ASME, Canada, April.
[14]T. Acikalin, S. V. Garimella, A. Raman, and J. Petroski, 2007, “Characterization and Optimization of the Thermal Performance of Miniature Piezoelectric Fans”, International Journal of Heat and Fluid Flow,Vol. 28, pp. 806–820.
[15]J. Petroski, M. Arik, and M. Gursoy, 2010, “Optimization of Piezoelectric Oscillating Fan-cooled Heat Sinks for Electronics Cooling”, IEEE Transactions on Components and Packaging Technology, Vol. 33, pp. 25-31.
[16]P. S. Chen, and S. C. Huang, 2010, “Design and Analysis of Piezoelectric Fans of Temperature Control”, National Kaohsiung University of Applied Sciences, Master of Science, Taiwan.
[17]S. M. Wait, S. Basak, S. V. Garimella, and A. Raman, 2007, “Piezoelectric Fans Using Higher Flexural Modes for Electronics Cooling Applications”, IEEE Transactions on Components and Packaging Technology, Vol. 30, pp. 119-128.
[18]T. Acikalin, A. Raman, and S. V. Garimella, 2003, “Two-dimensional Streaming Flows Induced by Resonating, Thin Beams”, Journal of the Acoustical Society of America, Vol. 114, pp. 1785-1795.
[19]M. Toda, and S. Osaka, 1979, “Vibrational Fan Using the Piezoelectric Polymer PVF2”, Proceedings of The IEEE, Vol 67, pp. 1171–1173.
[20]I. Sauciuc, S.-W. Moon, C.-P. Chiu, G. Chrysler, S. Lee, R. Paydar, M. Walker, and M. Luke, 2006, “Key Challenges for the Piezo Technology with Applications to Low form Factor Thermal Solutions”, IEEE Thermal and Thermomechanical Phenomena in Electronics Systems, pp. 781-785.
[21]T. Acikalin, S. M. Wait, S. V. Garimella, and A. Raman, 2004, “Experimental Investigation of the Thermal Performance of Piezoelectric Fans”, Heat Transf. Eng., Vol. 25, pp. 4–14.
[22]T. Açıkalın, S. V. Garimella, J. Petroski, and A. Raman, 2004, “Optimal Design of Miniature Piezoelectric Fans for Cooling Light Emitting Diodes”, Proc. 9th Intersociety Conf. Thermal Thermomechanical Phenomena Electronic System, New York, pp. 663–671.
[23]Mark Kimber, Suresh V. Garimella, and Arvind Raman, 2006, “An Experimental Study of Fluidic Coupling between Multiple Piezoelectric Fans”, IEEE Thermal and Thermomechanical Phenomena in Electronics Systems, pp. 333-340.
[24]Mark Kimber, Suresh V. Garimella, and Arvind Raman, 2007, “Local Heat Transfer Coefficients Induced by Piezoelectrically Actuated Vibrating Cantilevers”, Transactions of the ASME, Vol. 129, pp. 1168-1176.
[25]Mark Kimber, Suresh V. Garimella, 2009, “Measurement and Prediction of the Cooling Characteristics of a Generalized Vibrating Piezoelectric Fan”, International Journal of Heat and Mass Transfer, Vol.52, pp. 4470-4478.
[26]Mark Kimber, R. Lonergan, and Suresh V. Garimella, 2009, “Experimental Study of Aerodynamic Damping in Arrays of Vibrating Cantilevers”, Journal of Fluids and Structures, pp1334-1347.
[27]Mark Kimber, Suresh V. Garimella, 2009, “Cooling Performance of Arrays of Vibrating Cantilevers”, Journal of Heat Transfer, vol.131.
[28]C. Cheng, and H. Ay, 2011, “Experimental Investigation of Flow Characteristics for Piezoelectric Fan by PIV Technique”, ISTP-22, Holland.
[29]L. I Yen, and H. Ay, 2010, “Experimental Investigation of Thermal Performance for Plate-Fin Heat Sink with Piezoelectric Fan by Using IR Thermovision”, National Kaohsiung University of Applied Sciences, Master of Science, Taiwan.
[30]P. T. Wu, and H. Ay, 2011, “Experimental Investigation of Flow Characteristics for Plate-Fin Heat Sink with Piezoelectric Fan by Using Particle Image Velocimetry”, The 8th Pacific Symposium on Flow Visualization and Image Processing, Moscow.
[31]Wei-Han Ho, and Hsiao-Kang Ma, 2011, “Study of piezoelectric fan between heat dissipation fins in a LED lighting system”, National Taiwan University, Master of Science, Taiwan
[32]B. E. Launder and D. B. Spalding, 1974, “The Numerical Computation of Turbulent Flow”, Computer Methods in Applied Mechanics and Engineering, Vol. 3, pp. 269-289.
[33]R. A. W. M. Henkes, F. F. van der Flugt, and C. J. Hoogendoorn., 1991”Natural Convection Flow in a Square Cavity Calculated with Low-Reynolds-Number Turbulence Models.” Int. J. Heat Mass Transfer, Vol. 34, pp. 1543-1557.
[34]Bing-Yan Wu and Herchang Ay, 2012, “Experimental Investigation of Thermal Performance for Couple Piezoelectric Fan with Plate-Fin Heat Sink and LED”, The 22nd National Conference on Combustion Science and Technology, Kaohsiung, Taiwan.
[35]Chihung Hsiao and Herchang Ay, 2008, “A Study of LED’s Heat Dissipation with Different Heat Sinks”, National Kaohsiung University of Applied Sciences, Master of Science, Taiwan.
[36]苗沛元,2009,現代紅外線系統工程實務,初版,東華書局,台灣
[37]FLIR Systems, 2004, ThermaCAM Researcher 2.8 Professional User’s Manual.
[38]強將實業股份有限公司,2004,紅外線熱像儀測溫系統訓練教材。
[39]LEDINside,http://www.ledinside.com.tw/tw
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊