(3.230.154.160) 您好!臺灣時間:2021/05/07 17:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:楊竣凱
研究生(外文):Chun-Kai Yang
論文名稱:電沉積製備AZO透明導電薄膜之研究
論文名稱(外文):Preparation and characterization of AZO transparent conducting films by electrochemical deposition
指導教授:楊文都楊文都引用關係何詠碩
指導教授(外文):Wein-Duo YangYung-Shou Ho
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:101
畢業學年度:100
語文別:中文
論文頁數:110
中文關鍵詞:電沉積氧化鋅摻雜鋁電阻率
外文關鍵詞:electrochemical depositionZnOdoped aluminumresistivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:574
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用電化學沉積法製備氧化鋅鋁(ZnO:Al, AZO)薄膜,探討不同氯化鉀濃度、硝酸鋅濃度、定電壓、沉積電量及不同含量的鋁前驅物對薄膜微結構及光學特性之影響。藉由高解析X光繞射儀(high resolution x-ray diffractometer, HR-XRD) 做晶體結構分析,以場發射掃描式電子顯微鏡(field emission scanning electron microscope, FE-SEM)及原子力顯微鏡(atomic force microscope, AFM)觀察其微結構、表面粗糙度及利用螢光光譜儀(fluorescent spectrophotometer)與紫外光可見光光譜儀(UV-Vis spectrometers)量測光學性質,以及四點探針(four point probe)量測薄膜電性。研究結果發現,以硝酸鋅濃度為0.03 M作為電解液、沉積電壓為-1.4 V、沉積電量為4 C,可製得高透光ZnO薄膜,光學穿透率達88 %。將高透光ZnO薄膜之最適化製程參數,於電解液中添加2 wt%之鋁前驅物含量,製備AZO導電薄膜,薄膜電阻率最低可達1.2×10-1 Ω-cm 。
In this study, the aluminum doped ZnO (Al:0-8 wt%) transparent conducting thin films were prepared by electrochemical deposition process from variously deposition parameters. The crystalline structures of the AZO thin films were determined by a high resolution x-ray diffractometer (HR-XRD). Field-emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM) were analyzed the surface morphology and microstructures of the AZO thin films. The optical properties of AZO thin films were detected by ultraviolet-visible spectroscopy (UV-Vis) and photoluminescence (PL).
The results show that the ZnO thin films of high transmittance can be prepared from zinc nitrate electrolyte at 0.03 M under -1.4 V of cathodic voltage and owned the optical transmittance of 88 % at 600 nm.
In addition, the AZO conducing thin films can be prepared by adding 2 wt% of aluminum precursor to the zinc nitrate electrolyte which was under the optimum operating parameters as listed above. These AZO thin films exhibit the resistivity of 1.2×10-1 Ω-cm.
中 文 摘 要 I
英 文 摘 要 II
致 謝 III
目 錄 V
表 目 錄 IX
圖 目 錄 X
第 一 章 緒 論 1
1-1 前言 1
1-2 氧化鋅鋁薄膜之簡介 4
1-2-1 ZnO光電特性 7
1-2-2 ZnO螢光特性 9
1-3 透明導電薄膜簡介 12
1-3-1 透明導電薄膜分類 12
1-3-2 透明導電薄膜之導電機制 15
1-3-3 透明導電薄膜之光學性質 17
1-3-4 氧化鋅薄膜之應用 21
1-3-5 透明導電薄膜的製備方式 22
1-3-5-1 氣相法 23
1-3-5-2 液相法 25
1-4 研究動機 32
第 二 章 文 獻 回 顧 33
2-1 ZnO電化學沉積法 33
2-1-1 沉積電位 33
2-1-2 鋅離子濃度 35
2-1-3 電解液溫度 36
2-1-4 氯離子濃度 37
2-2 AZO電化學沉積法 37
第 三 章 實 驗 方 法 與 步 驟 42
3-1 實驗流程 42
3-1-1 製備高透光ZnO薄膜 42
3-1-2 製備AZO透明導電薄膜 43
3-2 實驗藥品 46
3-3 實驗儀器 47
3-3-1 電化學儀器設備 47
3-3-2 實驗設備 48
3-3-3 分析儀器 48
第 四 章 實 驗 結 果 與 討 論 53
4-1 氯化鉀濃度影響 53
4-2 沉積電位之影響 58
4-3 硝酸鋅濃度之影響 65
4-4沉積電量之影響 71
4-5鋁含量之影響 75
第 五 章 結 論 87
參 考 文 獻 90
自 傳 97
1.M. Chen, Z.L. Pei, C. Sun, J. Gong, R.F. Huang, L.S. Wen, “ZAO: an attractive potential substitute for ITO in flat display panels,” Materials Science and Engineering, B85, 212 (2001).
2.J. Chen, H. Ye, L. Ae, Y. Tang, D. Kieven, T. Rissom, J. Neuendorf, M. C. Lux-Steiner, “Tapered aluminum-doped vertical zinc oxide nanorod arrays as light coupling layer for solar energy applications,” Solar Energy Materials & Solar Cells, 95, 1437 (2011).
3.M. Kemell, F. Dartigues, M. Ritala, M. Leskela, “Electrochemical preparation of In and Al doped ZnO thin films for CuInSe2 solar cells,” Thin Solid Films, 434, 20 (2003).
4.J. Hu, R.G. Gordon, “Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition,” Journal of Applied Physics, 71, 880 (1992).
5.P. G. Cai, D. Zhen, X. J. Xu, Y. L. Liu, N. B. Chen, G. R. Wei, C. H. Sui, “A novel fiber-optic temperature sensor based on high temperature-dependent optical properties of ZnO film on sapphire fiber-ending,” Materials Science and Engineering, B 171, 116 (2010).
6.W. B. Wu, S. G. Cui, C. H. Yang, G. D. Hu, H. T. Wu, “Electrochemically superfilling of n-type ZnO nanorod arrays with p-type CuSCN semiconductor,” Electrochemistry Communications, 11, 1736 (2009).
7.Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, “A comprehensive review of ZnO materials and devices,” Journal of Applied Physics, 98, 041301 (2005).
8.Y. S. Kim, C. H. Park, “Rich variety of defects in ZnO via an attractive interaction between O vacancies and Zn interstitials: origin of n-type doping,” Physical Review Letters, 102, 086403 (2009).
9.T. Ohgaki, Y. Kawamura, T. Kuroda, N. Ohashi, Y. Adachi, T. Tsurumi, F. Minami, H. Haneda, “Optical properties of heavily aluminum-
doped zinc oxide thin films prepared by molecular beam epitaxy,” Key Engineering Materials, 248, 91 (2003).
10.Y. Hagiwara, T. Nakada, A. Kunioka, “Improved Jsc in CIGS thin film solar cells using a transparent conducting ZnO:B window layer,” Solar Energy Materials & Solar Cells, 67, 267 (2001).
11.A. Nadarajah, R. Konenkamp, “Dilute magnetic semiconductors from electrodeposited ZnO nanowires,” Physica Status Solidi B, 248, 334 (2011).
12.Z.Q. Xu, H. Deng, Y. Li, Q.H. Guo, Y.R. Li, “Characteristics of Al-doped c-axis orientation ZnO thin films prepared by the sol–gel method,” Materials Research Bulletin, 41, 354 (2006).
13.Z. Q. Xu, H. Deng, Y. Li, H. Cheng, “Al-doping effects on structure, electrical and optical properties of c-axis-orientated ZnO:Al thin films,” Materials Science in Semiconductor Processing, 9, 132 (2006).
14.L. Gong, Z. Z. Ye, J. G. Lu, L. P. Zhu, J. Y. Huang, X. Q. Gu, B. h. Zhao, “Highly transparent conductive and near-infrared reflective ZnO:Al thin films,” Vacuum, 84, 947 (2010).
15.K. E. Lee, M. Wang, E. J. Kim, S. H. Hahn, “Structural, electrical and optical properties of sol–gel AZO thin films,” Current Applied Physics, 9, 683 (2009).
16.V. Musat, B. Teixeira, E. Fortunato, R.C.C. Monteiro, P. Vilarinho, “Al-doped ZnO thin films by sol–gel method,” Surface and Coatings Technology, 180, 659 (2004).
17.USGS (U.S. Geological Survey), Mineral commodity summaries (2012)
18.維基百科, Zinc oxide, http://en.wikipedia.org/wiki/ZnO. (n.d.).
19.L. N. Dem’yanets, D. V. Kostomarov, I. P. Kuz’mina, “Chemistry and kinetics of ZnO growth from alkaline hydrothermal solutions,” Inorganic Materials, 38, 171 (2002).
20.F. K. Shan, B. I. Kim, G. X. Liu, Z. F. Liu, J. Y. Sohn, W. J. Lee, B. C. Shin, Y. S. Yu, “Blueshift of near band edge emission in Mg doped ZnO thin films and aging,” Journal of Applied Physics, 95, 4772 (2004).
21.M. S. Tyagi, Introduction to semiconductor material and devices, Wiley(1991)
22.B. Lin, Z. Fu, Y. Yia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates,” Applied Physics Letter, 79, 943 (2001).
23.駱榮富、吳忠衛、劉于菁,透明導電氧化物薄膜技術現況與發展,真空科技,22,39 (2009).
24.K. L. Chopra, S. Major, D. K. Pandya, “TRANSPARENT CONDUCTORS--A STATUS REVIEW,” Thin Solid Films, 102 , 46 (1983).
25.G. J. Exarhos, X. D. Zhou, “Discovery-based design of transparent conducting oxide films,” Thin Solid Films, 515, 7025 (2007).
26.M. Chen, Z. L. Pei, X. Wang, Y. H. Yu, X. H. Liu, C. Sun, L. S. Wen, “Intrinsic limit of electrical properties of transparent conductive oxide films,” Journal of Physics D: Applied Physics, 33, 2538 (2000).
27.彭立琪,國立成功大學 光電科學與工程研究所,氧化鋅鋁摻雜釔之透明導電薄膜材料特性與其應用在氮化鎵藍色發光二極體之研究 (2007).
28.J. S. Wellings, A. P. Samantilleke, P. Warren, S. N. Heavens, I. M. Dharmadasa, “Comparison of electrodeposited and sputtered intrinsic and aluminium-doped zinc oxide thin films,” Semiconductor Science and Technology, 23, 125003 (2008).
29.許國銓,『科技玻璃-高性能透明導電膜玻璃』,材料與社會 84,110 (1993).
30.柯賢文,表面與薄膜處理技術(修訂版),台北市,全華科技圖書股份有限公司 (2005).
31.田民波,薄膜技術與薄膜材料,台北市,五南圖書出版股份有限公司 (2007)
32.張琪芳,國立中央大學 能源工程研究所,利用化學水浴沉積法製作Ni-ZnO光電極之研究 (2008).
33.Mauricio Ortega-López, Alejandro Avila-García, M. L. Albor-Aguilera, V. M. Sánchez Resendiz, “Improved efficiency of the chemical bath deposition method during growth of ZnO thin films,” Materials Research Bulletin, 38, 1241 (2003).
34.章詠湟、陳智、彭智龍,原子沉積系統原理與應用,科儀新知,29,33 (2007).
35.吳景輝,國立成功大學 化學工程學所,含銀AZO 透明導電膜及AZO@ Au奈米粉體之研究 (2007).
36.馬振基,奈米材料科技原理及應用,台北市,全華科技圖書股份有限公司(2003).
37.萬其超,『電化學之原理與應用』,科學圖書大庫 (1983).
38.黃昇章,國立高雄應用科技大學 化學工程與材料工程所,以兩段式電沉積氧化鋅薄膜之微結構光學性質研究 (2010).
39.Th. Pauporte, D. Lincot,“Hydrogen peroxide oxygen precursor for zinc oxide electrodeposition II - Mechanistic aspects,”Journal of Electroanalytical Chemistry, 517, 54 (2001).
40.M. E. Fragala, G. Malandrino, M. M. Giangregorio, M. Losurdo, G. Bruno, S. Lettieri, L. S. Amato, P. Maddalena, “Structural, optical, and electrical characterization of ZnO and Al-doped ZnO thin films deposited by MOCVD,” Chemical Vapor Deposition, 15, 327 (2009).
41.I. Volintiru, M. Creatore, B. J. Kniknie, B. J. Kniknie, C. I. M. A. Spee, M. C. M. van de Sanden, “Evolution of the electrical and structuralproperties during the
growth of Al dop ZnO films by remote plasma-enhanced metalorganic chemical vapor deposition,” Journal of Applied Physics, 102, 043709 (2007).
42.D. Hidayat, T. Ogi, F. Iskandar, K. Okuyama, “Single crystal ZnO:Al nanoparticles directly synthesized using low-pressure spray pyrolysis,” Materials Science and Engineering B, 151, 231 (2008).
43.C. H. Hsu, D. H. Chen, “Synthesis and conductivity enhancement of Al-doped ZnO nanorod array thin films,” Nanotechnology, 21, 285603 (2010).
44.Y. Geng, L. Guo, S. S. Xu, Q. Q. Sun, S. J. Ding, H. L. Lu, D. W. Zhang, “Influence of Al doping on the properties of ZnO thin films grown by atomic layer deposition,” The Journal of Physical Chemistry C, 115, 12317 (2011).
45.J. S. Wellings, A. P. Samantilleke, P. Warren, S. N. Heavens, I. M. Dharmadasa, “Comparison of electrodeposited and sputtered intrinsic and aluminium-doped zinc oxide thin films,” Semiconductor Science and Technology, 23, 125003 (2008).
46.V. Teixeira, “Mechanical integrity in PVD coatings due to the presence of residual stresses” Thin Solid Films, 392, 276 (2001).
47.D. Lincot, “Electrodeposition of semiconductors,” Thin Solid Films, 487, 40 (2005).
48.M. Izaki, T. Omi, “Transparent zinc oxide films prepared by electrochemical reaction,” Applied Physics Letters, 68, 2439 (1996).
49.S. Peulon, D. Linco, “Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films,” Advanced Materials, 8,166 (1996).
50.J. S. Wellings, N. B. Chaure, S. N. Heavens, I. M. Dharmadasa, “Growth and characterisation of electrodeposited ZnO thin films,” Thin Solid Films, 516, 3893 (2008).
51.M. Izaki, T. Omi, “Electrolyte optimization for cathodic growth of zinc oxide films,” The Electrochemical Society, 143, L53 (1996).
52.D. Pradhan, K. T. Leung, “Controlled growth of two-dimensional and one-dimensional ZnO nanostructures on indium tin oxide coated glass by direct electrodeposition,” Langmuir, 24, 9707 (2008).
53.F. Xu, Y. Lu, L. Xia, Y. Xie, M. Dai, Y. Liu,“Seed layer-free electrodeposition of well-aligned ZnO submicron rod arrays via a simple aqueous electrolyte.” Materials Research Bulletin, 44, 1700 (2009).
54.M. Kemell, F. Dartigues, M. Ritala, M. Leskela, “Electrochemical preparation of In and Al doped ZnO thin films for CuInSe2 solar cells,” Thin Solid Films, 434, 20 (2003).
55.V. Donderis, J. Orozco, J. Cembrero, J. Curiel-Esparza, L.C. Damonte, M.A. Hernández Fenollosa, “Doped nanostructured zinc oxide films grown by electrodeposition,” Journal of Nanoscience and Nanotechnology, 10, 1387 (2010).
56.H. Y. Yang, S. H. Lee, T. W. Kim, “Effect of zinc nitrate concentration on the structural and the optical properties of ZnO nanostructures,” Applied Surface Science, 256, 6117 (2010).
57.F. Xu, Y. N. Lu, Y. Xie, Y. F. Liu, “Controllable morphology evolution of electrodeposited ZnO nano/micro-scale structures in aqueous solution,” Materials and Design, 30, 1704 (2009).
58.N. Mukherjee, S. F. Ahmed, K. K. Chattopadhyay, A. Mondal, “Role of solute and solvent on the deposition of ZnO thin films,” Electrochimica Acta, 54, 4015 (2009).
59.R.E. Marotti, P. Giorgi, G. Machado, E.A. Dalchiele, “Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures,” Solar Energy Materials & Solar Cells, 90, 2356 (2006).
60.B. Q. Cao, W. P. Cai, H. B. Zeng, G. T. Duan, “Morphology evolution and photoluminescence properties of ZnO films electrochemically deposited on conductive glass substrates,” Journal of Applied Physics, 99 , 073516 (2006).
61.Y. J. Kim, H. Shang, G. Cao, “Growth and Characterization of [001] ZnO Nanorod Array on ITO Substrate with Electric Field Assisted Nucleation,” Journal of Sol-Gel Science and Technology, 39, 79 (2006).
62.M. Izaki, “Preparation of transparent and conductive zinc oxide films by optimization of the two-step electrolysis technique,” Journal of The Electrochemical Society, 146, (12), 4517 (1999).
63.H. K. Lee, M. S. Kim, J. S. Yu, “Effect of AZO seed layer on electrochemical growth and optical properties of ZnO nanorod arrays on ITO glass,” Nanotechnology, 22, 445602 (2011).
64.R. K. Shukla, Anchal Srivastava, Atual Srivastava, “Growth of transparent conducting nanocrystalline Al doped ZnO thin films by pulsed laser deposition,” Journal of Crystal Growth, 294, 427 (2006).
65.L. F. Xu, Y. Guo, Q. Liao, J.P. Zhang, D. S. Xu, “Morphological control of ZnO nanostructures by electrodeposition,” Journal of Physical Chemistry B, 109, 13519 (2005).
66.陳文華,國立成功大學 化學工程研究所,以射頻磁控濺鍍法成長氧化鋅透明導電薄膜 (2010).
67.H. J. Rösler, H. Lange,“Geochemical tables,”Amsterdam and New York (1972)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔