(18.206.238.77) 您好!臺灣時間:2021/05/18 06:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳奐文
研究生(外文):Huan-Wen Chen
論文名稱:帶有羰基高分子薄膜表面噴塗奈米碳管之研究
論文名稱(外文):Spray Coating of Carbon Nanotubes upon the Polymer Film Containing Carbonyl Groups
指導教授:林榮顯
指導教授(外文):Rong-Hsien Lin
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:101
畢業學年度:100
語文別:中文
論文頁數:146
中文關鍵詞:聚二萘酸乙二酯聚亞醯胺奈米碳管表面改質靜電噴塗
外文關鍵詞:polyethylene 2,6-naphthalate (PEN)polyimide (PI)carbon nanotubeelectrostatic sprayhydrophobicity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:739
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:1
本研究先利用混酸法將奈米碳管進行酸化改質,製備出含有不同羧酸基(-COOH)的奈米碳管。再以鹼處理的聚二萘酸乙二酯(PEN)與聚亞醯胺薄膜(PI)作為基材,利用靜電噴塗法噴塗含奈米碳管及環氧樹脂噴塗液於表面鹼處理後的高分子薄膜。

改質碳管可以改善碳管在溶劑中的分散性,當改質碳管-COOH含量越多,分散性較佳,但碳管會呈現較親水之性質。噴塗奈米碳管於高分子薄膜表面之形態、接觸角(疏水性)、片電阻率以及透光率會因為碳管的羧酸基含量以及基材表面的碳管噴塗量而有所變化。

藉由SEM觀察,高分子基材表面噴塗奈米碳管的表面形態,隨碳管噴塗量增加,表面微結構密度會上升。當改質碳管羧酸基(-COOH)含量越多,碳管所造成的形態越緻密。利用Contact angle meter來觀察其疏水性質,發現改質碳管羧酸基(-COOH)含量小於1.3 mmol/g時,其接觸角剛好大於90 o,具有疏水的特性。當噴塗改質碳管於基材表面時,基材表面羧酸基(-COOH)含量越少,其接觸角越大。另外,當改質碳管羧酸基(-COOH)含量小於1.3 mmol/g時,隨噴塗量增加,接觸角會上升;當改質碳管羧酸基(-COOH)含量大於1.3 mmol/g時,隨噴塗量增加,接觸角會下降。利用四點探針發現,改質碳管-COOH含量越多,片電阻率會上升,導電性變差。隨改質碳管噴塗量增加,片電阻率會下降。樣品的透光率會隨基材表面碳管噴塗量增加而下降。

當噴塗羧酸基(-COOH)含量為0.52 mmol/g的改質碳管於PEN基材表面時,碳管噴塗量在2 ~ 6 μg/cm2範圍下,可以找出具疏水性、半導體電性及70%以上的透光性之PEN薄膜。同樣的改質碳管噴塗於PI基材表面時,碳管噴塗量在4 ~ 6 μg/cm2範圍下,可以找出具疏水性、半導體電性及60%以上的透光性之PI薄膜。最後,利用XPS證實環氧樹脂與高分子基材表面羧酸基(-COOH)或醇基(-OH)產生化學鍵結,進而增加CNT與高分子基材之間的接著性。
Various level of carboxyl group-tethered carbon nanotubes (CNT) were prepared by a mixed acid method. Subsequently, the modified carbons and an epoxy resin were individually spray-coated in series on the treated polymer substrates, polyethylene 2,6-naphthalate (PEN) and polyimide (PI), by an electrostatic spray method to form PEN-CNT and PI-CNT composites.

Dispersion of carbon nanotube could be improved by tethering carboxyl groups (-COOH) on the surface of carbon nanotube. Dispersion ability increases with increasing the content of carboxyl groups; but, the hydrophobicity decreases with increasing the content of carboxyl groups.

The surface morphology of PEN-CNT and PI-CNT composites could be controlled by varying level of carboxyl group and content of carbon nanotubes, and were investigated by SEM. Level of carboxyl group density and content of carbon nanotubes are the main factor to influence the surface morphology, contact angle (hydrophobicity), sheet resistivity, and transparency. These properties were thoroughly investigated by various instruments.
The higher –COOH content density, the higher contact angle. The contact angle is higher than 90 o when the -COOH content density is lower than 1.3 mmol/g, which indicate the hydrophobic characteristics of CNT. When the -COOH content density is lower than 1.3 mmol/g, the contact angle increases with increasing the spray amount of CNT; whereas, when the -COOH content density is higher than 1.3 mmol/g, the contact angle decreases with increasing the spray amount of CNT.

The sheet resistivity decreased with decreasing the COOH content density and with increasing the spray amount of CNT. The transmittance increased with decreasing the spray amount of CNT.

The PEN-CNT films are favorable to hydrophobicity, sheet conductivity, and transmittance when the films were spray-coated amount of CNT between 2 ~ 6 μg/cm2 with the -COOH content density of 0.52 mmol/g. The PI-CNT films are favorable to hydrophobicity, sheet conductivity, and transmittance when the films were spray-coated amount of CNT between 4 ~ 6 μg/cm2 with the -COOH content density of 0.52 mmol/g.
總目錄
摘要 I
Abstract III
致謝 V
總目錄 VI
流程目錄(Scheme) VIII
圖目錄(Figure) IX
表目錄(Table) XIII

第一章 前言 1
1-1 疏水性簡介 2
1-2 奈米碳管之簡介 4
1-2-1 奈米碳管的特性 5
1-2-2 奈米碳管的分散方法 8
1-2-2.1 共價鍵修飾 8
1-2-2.2 非共價鍵的修飾 9
1-3 PEN之簡介 9
1-4 PI之簡介 10
第二章 基本原理 12
2-1 疏水原理機制 12
2-2 環氧樹脂之硬化反應 16
2-3 文獻回顧 18
2-3-1 PET與PI薄膜之表面處理 18
2-3-2 材料經表面處理之物性變化 20
2-3-3 材料表面具有奈米碳管之物性變化 22
2-4 研究動機及實驗目的 26
第三章 材料設備與研究方法 27
3-1 實驗材料 27
3-2 實驗儀器 29
3-3 合成步驟與實驗方法 32
3-3-1 奈米碳管溶液(CNT solution)配製 32
3-3-2 PEN薄膜之表面鹼處理 33
3-3-3 PI薄膜之製備及表面鹼處理 33
第四章 結果與討論 35
4-1 不同酸化改質條件的奈米碳管之性質及分散性探討 35
4-2 高分子 (PEN、PI) 基材表面鹼處理 37
4-2-1 PEN膜表面鹼處理之鑑定 37
4-2-2 PI膜表面鹼處理之鑑定 38
4-3 高分子表面噴塗奈米碳管之樣品備製 38
4-3-1 接著劑之反應性探討 39
4-4 PEN表面噴塗奈米碳管之樣品物性探討 40
4-4-1 疏水性之探討 40
4-4-2 表面電性質之測試 43
4-4-3 光學性質之探討 46
4-4-4 附著性測試 48
4-4-4.1 環氧樹脂與PEN薄膜表面之鑑結鑑定 48
4-4-4.2 百格刀附著性測試 49
4-4-5 最佳化條件 49
4-5 PI表面噴塗奈米碳管之樣品物性探討 50
4-5-1 疏水性之探討 50
4-5-2 表面電性質之測試 52
4-5-3 光學性質之探討 53
4-5-4 附著性測試 55
4-5-4.1 環氧樹脂與PI薄膜表面之鑑結鑑定 55
4-5-4.2 百格刀附著性測試 56
4-5-5 最佳化條件 56
第五章 結論 58
第六章 參考文獻 60
自傳簡歷 129



流程目錄(Scheme)
Scheme 1. 環氧樹脂與雙胺硬化劑之反應關係 65
Scheme 2. 實驗流程圖 66
Scheme 3. 奈米碳管溶液備製流程圖 67
Scheme 4. PEN表面鹼處理反應步驟流程圖 68
Scheme 5. 聚亞醯胺合成反應步驟流程圖 69
Scheme 6. 聚亞醯胺表面鹼處理反應步驟流程圖 70
Scheme 7. 環氧樹脂與PEI反應示意圖 71
Scheme 8. 鹼處理的PEN與環氧樹脂之反應示意圖 72
Scheme 9. 鹼處理的PI與環氧樹脂之反應示意圖 73



圖目錄(Figure)
Figure 1. 蓮葉之超疏水現象 2
Figure 2. 表面之臘質結晶 3
Figure 3. (A) armchair奈米碳管,(n,m) = (5,5),θ = 30 °(B) zigzag奈米碳管,(n,m) = (9,0),θ = 0 °(C)chiral奈米碳管,(n,m) = (10,5),0 < θ < 30 ° [7] 6
Figure 4.單層奈米碳管的分類方法 7
Figure 5. 各種奈米碳管修飾方法示意圖 8
Figure 6. 液滴滴於表面之接觸角示意圖 13
Figure 7. Wenzel's Theory的表面示意圖 13
Figure 8. Cassie's Theory的表面示意圖 14
Figure 9. 經超音波震盪30 min後靜置,CNT-◇◇溶液之分散性隨靜置時間的變化 74
Figure 10. 不同酸化條件下純奈米碳管的表面形態 (a) CNT-M05 (b) CNT-M25 75
Figure 11. 改質碳管沉澱於基材表面之樣品 76
Figure 12. 改質碳管的羧酸基含量對接觸角之影響 77
Figure 13. PEN薄膜表面經鹼處理時間(a) 0 min (b) 20 min (c) 40 min (d) 60 min之ATR-FTIR光譜圖 78
Figure 14. PEN薄膜表面經鹼處理時間(A) 0 min (B) 30 min之XPS光譜圖 79
Figure 15. PI薄膜表面經鹼處理時間(a) 0 min (b) 10 min (c) 20min之ATR-FTIR光譜圖 80
Figure 16. 靜電噴塗奈米碳管於聚亞醯胺薄膜示意圖 81
Figure 17. 環氧樹脂與PEI之反應溫度DSC 82
Figure 18. 環氧樹脂與PEI不同反應時間之FTIR光譜圖 (a) 0 min (b) 10 min (c) 20 min (d) 30 min (e) 40 min (反應溫度80 oC) 83
Figure 19. PEN表面碳管噴塗量不同下之碳管羧酸基含量與接觸角之關係 (a) PEN-CNT-M◇◇-2 (b) PEN-CNT-M◇◇-4 (c) PEN-CNT-M◇◇-6 (d) PEN-CNT-M◇◇-8;◇◇:carboxyl group density 84
Figure 20. PEN表面噴塗CNT之SEM圖(PEN-CNT-M05-△) (a) neat PEN (b) PEN-CNT-M05-1 (c) PEN-CNT-M05-2 (d) PEN-CNT-M05-4 (e) PEN-CNT-M05-6 (f) PEN-CNT-M05-8 85
Figure 21. PEN表面噴塗CNT之CA圖(PEN-CNT-M05-△) (a) neat PEN (b) PEN-CNT-M05-1 (c) PEN-CNT-M05-2 (d) PEN-CNT-M05-4 (e) PEN-CNT-M05-6 (f) PEN-CNT-M05-8 86
Figure 22. PEN表面噴塗CNT之SEM圖(PEN-CNT-M13-△) (a) neat PEN (b) PEN-CNT-M13-1 (c) PEN-CNT-M13-2 (d) PEN-CNT-M13-4 (e) PEN-CNT-M13-6 (f) PEN-CNT-M13-8 87
Figure 23. PEN表面噴塗CNT之CA圖(PEN-CNT-M13-△) (a) neat PEN (b) PEN-CNT-M13-1 (c) PEN-CNT-M13-2 (d) PEN-CNT-M13-4 (e) PEN-CNT-M13-6 (f) PEN-CNT-M13-8 88
Figure 24. PEN表面噴塗CNT之SEM圖(PEN-CNT-M25-△) (a) neat PEN (b) PEN-CNT-M25-1 (c) PEN-CNT-M25-2 (d) PEN-CNT-M25-4 (e) PEN-CNT-M25-6 (f) PEN-CNT-M25-8 89
Figure 25. PEN表面噴塗CNT之CA圖(PEN-CNT-M25-△) (a) neat PEN (b) PEN-CNT-M25-1 (c) PEN-CNT-M25-2 (d) PEN-CNT-M25-4 (e) PEN-CNT-M25-6 (f) PEN-CNT-M25-8 90
Figure 26. PEN表面噴塗CNT之傾斜45度SEM圖 (a) PEN-CNT-M05-2 (b) PEN-CNT-M05-8 (c) PEN-CNT-M13-2 (d) PEN-CNT-M13-8 (e) PEN-CNT-M25-2 (f) PEN-CNT-M25-8 91
Figure 27. PEN表面噴塗CNT之電性質(PEN-CNT-M05-△) 92
Figure 28. PEN表面噴塗CNT之電性質(PEN-CNT-M13-△) 93
Figure 29. PEN表面噴塗CNT之電性質(PEN-CNT-M25-△) 94
Figure 30. PEN表面碳管噴塗量不同下之碳管羧酸基含量與表面電性質關係 (a) PEN-CNT-M◇◇-2 (b) PEN-CNT-M◇◇-4 (c) PEN-CNT-M◇◇-6 (d) PEN-CNT-M◇◇-8;◇◇:carboxyl group density 95
Figure 31. PEN表面噴塗CNT之光學性質(PEN-CNT-M05-△) (a) neat PEN (b) PEN-CNT-M05-1 (c) PEN-CNT-M05-2 (d) PEN-CNT-M05-4 (e) PEN-CNT-M05-6 (f) PEN-CNT-M05-8 96
Figure 32. PEN表面噴塗CNT之光學性質(PEN-CNT-M13-△) (a) neat PEN (b) PEN-CNT-M13-1 (c) PEN-CNT-M13-2 (d) PEN-CNT-M13-4 (e) PEN-CNT-M13-6 (f) PEN-CNT-M13-8 97
Figure 33. PEN表面噴塗CNT之光學性質(PEN-CNT-M25-△) (a) neat PEN (b) PEN-CNT-M25-1 (c) PEN-CNT-M25-2 (d) PEN-CNT-M25-4 (e) PEN-CNT-M25-6 (f) PEN-CNT-M25-8 98
Figure 34. PEN表面碳管噴塗量不同下之碳管羧酸基含量與光學性質關係 (A) 波長500 nm (B) 波長600 nm。圖中(a) PEN-CNT-M◇◇-2 (b) PEN-CNT-M◇◇-4 (c) PEN-CNT-M◇◇-6 (d) PEN-CNT-M◇◇-8;◇◇:carboxyl group density 99
Figure 35. PEN薄膜鹼處理後接枝BADGE之XPS光譜圖 (A) PEN鹼處理30 min (B) PEN鹼處理30 min後接枝BADGE 100
Figure 36. PEN表面噴塗CNT之百格刀附著性測試,未接枝BADGE之PEN-CNT薄膜 101
Figure 37. PEN表面噴塗CNT之百格刀附著性測試,未接枝BADGE之PEN-CNT-M25-2薄膜 102
Figure 38. PEN表面噴塗CNT之百格刀附著性測試,接枝BADGE之PEN-CNT-M25-2薄膜 103
Figure 39. PEN-CNT-M05-△之最佳化條件 104
Figure 40. PEN-CNT-M13-△之最佳化條件 105
Figure 41. PEN-CNT-M25-△之最佳化條件 106
Figure 42. PI表面噴塗CNT之SEM圖(PI-CNT-M05-△) (a) nrat PI (b) PI-CNT-M05-1 (c) PI-CNT-M05-2 (d) PI-CNT-M05-4 (e) PI-CNT-M05-6 (f) PI-CNT-M05-8 107
Figure 43. PI表面噴塗CNT之CA圖(PI-CNT-M05-△) 108
Figure 44. PI表面噴塗CNT之SEM圖(PI-CNT-M13-△) (a) neat PI (b) PI-CNT-M13-1 (c) PI-CNT-M13-2 (d) PI-CNT-M05-4 (e) PI-CNT-M05-6 (f) PI-CNT-M05-8 109
Figure 45. PI表面噴塗CNT之CA圖(PI-CNT-M13-△) 110
Figure 46. PEN表面噴塗CNT之傾斜45度SEM圖 (a) PI-CNT-M05-2 (b) PI-CNT-M05-8 (c) PI-CNT-M13-2 (d) PI-CNT-M13-8 111
Figure 47. PI表面噴塗CNT之電性質(PI-CNT-M05-△) 112
Figure 48. PI表面噴塗CNT之電性質(PI-CNT-M13-△) 113
Figure 49. PI表面噴塗CNT之光學性質(PI-CNT-M05-△) (a) neat PI (b) PI-CNT-M05-1 (c) PI-CNT-M05-2 (d) PI-CNT-M05-4 (e) PI-CNT-M05-6 (f) PI-CNT-M05-8 114
Figure 50. PI表面噴塗CNT之光學性質(PI-CNT-M13-△) (a) neat PI (b) PI-CNT-M13-1 (c) PI-CNT-M13-2 (d) PI-CNT-M13-4 (e) PI-CNT-M13-6 (f) PI-CNT-M13-8 115
Figure 51. PI薄膜鹼處理後接枝BADGE之XPS光譜圖 (A) PI鹼處理10 min (B) PI鹼處理10 min後接枝BADGE 116
Figure 52. PI表面噴塗CNT之百格刀附著性測試,未接枝BADGE之PI-CNT薄膜 117
Figure 53. PI表面噴塗CNT之百格刀附著性測試,未接枝BADGE之PI-CNT-M13-2薄膜 118
Figure 54. PI表面噴塗CNT之百格刀附著性測試,接枝BADGE之PI-CNT-M25-2薄膜 119
Figure 55. PI-CNT-M05-△之最佳化條件 120
Figure 56. PI-CNT-M13-△之最佳化條件 121



表目錄(Table)
Table 1. PEN與PET的性能比較 10
Table 2. 不同酸化條件的CNT之COOH contents 122
Table 3. PEN-CNT-M05-△薄膜之接觸角、表面電阻率及透光性 123
Table 4. PEN-CNT-M13-△薄膜之接觸角、表面電阻率及透光性 124
Table 5. PEN-CNT-M25-△薄膜之接觸角、表面電阻率及透光性 125
Table 6. PI-CNT-M05-△薄膜之接觸角、表面電阻率及透光性 126
Table 7. PI-CNT-M13-△薄膜之接觸角、表面電阻率及透光性 127
Table 8. 鹼處理的PEN薄膜與碳管之附著性 128
Table 9. 鹼處理的PI薄膜與碳管之附著性 128
[1]R. Blossey, "Self-cleaning surfaces - virtual realities," Nature Materials, vol. 2, pp. 301-306, 2003.
[2]T. Sun, L. Feng, X. Gao, and L. Jiang, "Bioinspired Surfaces with Special Wettability," Accounts of Chemical Research, vol. 38, pp. 644-652, 2005.
[3]S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 1991.
[4]S. Iijima and T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter," Nature, vol. 363, pp. 603-605, 1993.
[5]D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, "Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls," Nature, vol. 363, pp. 605-607, 1993.
[6]W. Chen, X. Tao, P. Xue, and X. Cheng, "Enhanced mechanical properties and morphological characterizations of poly(vinyl alcohol)-carbon nanotube composite films," Applied Surface Science, vol. 252, pp. 1404-1409, 2005.
[7]J. W. Mintmire, B. I. Dunlap, and C. T. White, "Are fullerene tubules metallic?," Physical Review Letters, vol. 68, pp. 631-634, 1992.
[8]T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, "Electrical conductivity of individual carbon nanotubes," Nature, vol. 382, pp. 54-56, 1996.
[9]A. Hirsch, O. Vostrowsky, and A. D. Schlüter, "Functionalization of Carbon Nanotubes." vol. 245: Springer Berlin / Heidelberg, pp. 193-237, 2005.
[10]M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, "Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes," Science, vol. 297, pp. 593-596, 2002.
[11]M. J. O'Connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K. D. Ausman, and R. E. Smalley, "Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping," Chemical Physics Letters, vol. 342, pp. 265-271, 2001.
[12]J. Tsibouklis and T. G. Nevell, "Ultra-Low Surface Energy Polymers: The Molecular Design Requirements," Advanced Materials, vol. 15, pp. 647-650, 2003.
[13]T. Sun, G. Wang, L. Feng, B. Liu, Y. Ma, L. Jiang, and D. Zhu, "Reversible Switching between Superhydrophilicity and Superhydrophobicity," Angewandte Chemie International Edition, vol. 43, pp. 357-360, 2004.
[14]K. Ma, T. S. Chung, and R. J. Good, "Surface energy of thermotropic liquid crystalline polyesters and polyesteramide," Journal of Polymer Science Part B: Polymer Physics, vol. 36, pp. 2327-2337, 1998.
[15]R. N. Wenzel, "RESISTANCE OF SOLID SURFACES TO WETTING BY WATER," Industrial and Engineering Chemistry, vol. 28, 1936.
[16]M. Callies and D. Quere, "On water repellency," Soft Matter, vol. 1, pp. 55-61, 2005.
[17]A. B. D. Cassie and S. Baxter, "Wettability of porous surfaces," Transactions of the Faraday Society, vol. 40, pp. 546-551, 1944.
[18]S. Baxter and A. B. D. Cassie, "8-THE WATER REPELLENCY OF FABRICS AND A NEW WATER REPELLENCY TEST," Journal of the Textile Institute Transactions, vol. 36, pp. T67-T90, 1945.
[19]H. Wu, A. Gopala, F. Harris, and P. Heiden, "Investigation of readily processable thermoplastic-toughened thermosets. II. Epoxy toughened using a reactive solvent approach," Journal of Applied Polymer Science, vol. 70, pp. 935-942, 1998.
[20]W. Chen and T. J. McCarthy, "Chemical Surface Modification of Poly(ethylene terephthalate)," Macromolecules, vol. 31, pp. 3648-3655, 1998.
[21]B. Z. Wan, C. Y. Kao, and W. H. Cheng, "Kinetics of Depolymerization of Poly(ethylene terephthalate) in a Potassium Hydroxide Solution," Industrial & Engineering Chemistry Research, vol. 40, pp. 509-514, 2000.
[22]楊長亮, "濕式塗佈ITO於帶有羰基高分子薄膜之研究," 國立高雄應用科技大學碩士論文, 2009.
[23]K. W. Lee, S. P. Kowalczyk, and J. M. Shaw, "Surface modification of PMDA-oxydianiline polyimide. Surface structure-adhesion relationship," Macromolecules, vol. 23, pp. 2097-2100, 1990.
[24]陳源保, "聚亞醯胺薄膜表面金屬化之研究," 國立高雄應用科技大學碩士論文, 2009.
[25]N. D. Sankir and R. O. Claus, "An alternative method for selective metal deposition onto flexible materials," Journal of Materials Processing Technology, vol. 196, pp. 155-159, 2008.
[26]S. Qi, Z. Wu, D. Wu, W. Wang, and R. Jin, "Highly Reflective and Conductive Double-Surface-Silvered Polyimide Films Prepared from Silver Fluoride and BTDA/4,4'-ODA," Langmuir, vol. 23, pp. 4878-4885, 2007.
[27]A. Y. Fadeev and T. J. McCarthy, "Surface Modification of Poly(ethylene terephthalate) To Prepare Surfaces with Silica-Like Reactivity," Langmuir, vol. 14, pp. 5586-5593, 1998.
[28]W. Yu and T. M. Ko, "Surface characterizations of potassium-hydroxide-modified Upilex-S polyimide at an elevated temperature," European Polymer Journal, vol. 37, pp. 1791-1799, 2001.
[29]C. Charton and M. Fahland, "Optical and electrical properties of sputtered Ag films on PET webs," Surface and Coatings Technology, vol. 142-144, pp. 175-180, 2001.
[30]M. M. D. Ramos, "Theoretical study of metal-polyimide interfacial properties," Vacuum, vol. 64, pp. 255-260, 2002.
[31]K. Akamatsu, S. Ikeda, H. Nawafune, and S. Deki, "Surface Modification-Based Synthesis and Microstructural Tuning of Nanocomposite Layers: Monodispersed Copper Nanoparticles in Polyimide Resins," Chemistry of Materials, vol. 15, pp. 2488-2491, 2003.
[32]Z. Wu, D. Wu, S. Qi, T. Zhang, and R. Jin, "Preparation of surface conductive and highly reflective silvered polyimide films by surface modification and in situ self-metallization technique," Thin Solid Films, vol. 493, pp. 179-184, 2005.
[33]J. A. Howarter and J. P. Youngblood, "Surface Modification of Polymers with 3-Aminopropyltriethoxysilane as a General Pretreatment for Controlled Wettability," Macromolecules, vol. 40, pp. 1128-1132, 2007.
[34]H. J. Kim, Y. J. Park, J.-H. Choi, H. S. Han, and Y. T. Hong, "Surface modification of polyimide film by coupling reaction for copper metallization," Journal of Industrial and Engineering Chemistry, vol. 15, pp. 23-30, 2009.
[35]C. J. Weng, C. H. Chang, C. W. Peng, S. W. Chen, J. M. Yeh, C. L. Hsu, and Y. Wei, "Advanced Anticorrosive Coatings Prepared from the Mimicked Xanthosoma Sagittifolium-leaf-like Electroactive Epoxy with Synergistic Effects of Superhydrophobicity and Redox Catalytic Capability," Chemistry of Materials, vol. 23, pp. 2075-2083, 2011.
[36]K. A. Watson, S. Ghose, D. M. Delozier, J. G. Smith Jr, and J. W. Connell, "Transparent, flexible, conductive carbon nanotube coatings for electrostatic charge mitigation," Polymer, vol. 46, pp. 2076-2085, 2005.
[37]D. M. Delozier, K. A. Watson, J. G. Smith, and J. W. Connell, "Preparation and characterization of space durable polymer nanocomposite films," Composites Science and Technology, vol. 65, pp. 749-755, 2005.
[38]D. Xu, H. Liu, L. Yang, and Z. Wang, "Fabrication of superhydrophobic surfaces with non-aligned alkyl-modified multi-wall carbon nanotubes," Carbon, vol. 44, pp. 3226-3231, 2006.
[39]J. H. Kim, K. W. Nam, S. B. Ma, and K. B. Kim, "Fabrication and electrochemical properties of carbon nanotube film electrodes," Carbon, vol. 44, pp. 1963-1968, 2006.
[40]H. J. Jeong, H. K. Choi, G. Y. Kim, Y. I. Song, Y. Tong, S. C. Lim, and Y. H. Lee, "Fabrication of efficient field emitters with thin multiwalled carbon nanotubes using spray method," Carbon, vol. 44, pp. 2689-2693, 2006.
[41]C. T. Hsieh, W. Y. Chen, and F. L. Wu, "Fabrication and superhydrophobicity of fluorinated carbon fabrics with micro/nanoscaled two-tier roughness," Carbon, vol. 46, pp. 1218-1224, 2008.
[42]X. Zhao, A. A. Koos, B. T. T. Chu, C. Johnston, N. Grobert, and P. S. Grant, "Spray deposited fluoropolymer/multi-walled carbon nanotube composite films with high dielectric permittivity at low percolation threshold," Carbon, vol. 47, pp. 561-569, 2009.
[43]C. T. Hsieh, W. Y. Chen, F. L. Wu, and W. M. Hung, "Superhydrophobicity of a three-tier roughened texture of microscale carbon fabrics decorated with silica spheres and carbon nanotubes," Diamond and Related Materials, vol. 19, pp. 26-30, 2010.
[44]J. Yang, Z. Zhang, X. Men, X. Xu, and X. Zhu, "Reversible Superhydrophobicity to Superhydrophilicity Switching of a Carbon Nanotube Film via Alternation of UV Irradiation and Dark Storage," Langmuir, vol. 26, pp. 10198-10202, 2010.
[45]T. Wu, Y. Pan, and L. Li, "Study on superhydrophobic hybrids fabricated from multiwalled carbon nanotubes and stearic acid," Journal of Colloid and Interface Science, vol. 348, pp. 265-270, 2010.
[46]C. H. Lee, N. Johnson, J. Drelich, and Y. K. Yap, "The performance of superhydrophobic and superoleophilic carbon nanotube meshes in water-oil filtration," Carbon, vol. 49, pp. 669-676, 2011.
[47]J. Yang, Z. Zhang, X. Men, X. Xu, and X. Zhu, "Thermo-responsive surface wettability on a pristine carbon nanotube film," Carbon, vol. 49, pp. 19-23, 2011.
[48]R. Fu¨ rstner, W. Barthlott, C. Neinhuis, and P. Walzel, "Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces," Langmuir, vol. 21, pp. 956-961, 2005.
[49]W. Barthlott and C. Neinhuis, "Purity of the sacred lotus, or escape from contamination in biological surfaces," Planta, vol. 202, pp. 1-8, 1997.
[50]Y. T. Shieh, G. L. Liu, H. H. Wu, and C. C. Lee, "Effects of polarity and pH on the solubility of acid-treated carbon nanotubes in different media," Carbon, vol. 45, pp. 1880-1890, 2007.
[51]G. Beamson and D. Briggs, "High Reasolution XPS of Organic Polymers," 1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊