(3.238.173.209) 您好!臺灣時間:2021/05/15 17:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:鄭羽峻
研究生(外文):Yu-Jun Zheng
論文名稱:利用電泳沉積法製備白金和碳材對應電極應用於染料敏化太陽能電池
論文名稱(外文):Electrophoretic depositions of platinum and carbon materials on FTO Electrophoretic depositions of platinum and carbon materials on FTO glass as counter electrodes for dye-sensitized solar cells
指導教授:吳茂松
指導教授(外文):Mao-Sung Wu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:101
畢業學年度:100
語文別:中文
中文關鍵詞:電泳沉積法染料敏化太陽能電池氧化石墨烯活性碳
外文關鍵詞:Electrophoretic depositiondye-sensitized solar cellplatinumcarbongraphene oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:331
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本研究分成兩個部份,第一部分以奈米白金粒子為材料,利用電泳方式製備對應電極。利用硼氫化鈉將白金離子還原,透過添加分散劑PVP (Polyvinylpyrrolidone),使白金顆粒之間具有空間位阻斥力,能更有效的分散在溶液中,由掃描式電子顯微鏡觀察,發現以電泳方式沉積白金薄膜較均勻且較無團聚現象發生。透過調整電泳時間來控制白金沉積量,並和以含浸方式製備的白金對應電極進行比較,能量分散光譜儀分析其白金比例,發現在白金含量大約相同的情況下,以電泳方式製備的對應電極,其電池元件的光電轉換效率可達到6.0 % (電解液以3-甲氧基丙腈為溶劑),比起以含浸方式製備白金對應電極其光電轉換效率提升了大約1.09 %。第二部分為利用電泳方式製備活性碳/氧化石墨烯複合電極,透過添加微量硝酸鎳使活性碳及氧化石墨烯攜帶正電荷,並添加PVP使活性碳和氧化石墨烯能均勻分散在電泳液中,將不同比例的活性碳/氧化石墨烯混摻,並透過控制電泳時間製備對應電極,結果顯示隨著氧化石墨烯混摻比例增加,其電阻率下降,由交流阻抗圖譜發現當氧化石墨烯含量越多時,其電解液與對應電極介面的電荷轉移阻抗有下降的趨勢,這將有助於提升電池光電轉換效率,最高可達到7.424% (電解液以乙腈為溶劑)。
This study can be divided into two parts. In the first part, Pt was used as the material to prepare the counter electrodes via EPD (electrophoretic deposition) method. We employed NaBH4 as a reducing agent to reduce Pt ion, and added a dispersant of PVP (polyvinylpyrrolidone) to allow steric repulsion between the Pt particles. By observing through SEM (scanning electron microscope), we found that the Pt films obtained by EDP are more uniform and less agglomerated. We can control the deposition amount of Pt by controlling the deposition time. Using the same coating amount of Pt as counter electrodes, the photovoltaic conversion efficiency of DSC (dye-sensitized solar cell) employing Pt counter prepared by EPD can reach as high as 6.0 % in methoxypropionitrile-based electrolyte, which is higher than that of DSC employing Pt counter prepared by dip-coating method. In the second part, we prepared carbon/graphene oxide composite electrodes by electrophoretic deposition. In EPD suspension, we added nickel nitrate (0.5 mM) to form positively charged surface on the carbon and graphene oxide. The carbon and graphene oxide can be uniformly dispersed by employing a small amount of PVP (polyvinylpyrrolidone). We used EPD slurry with different ratios of carbon to graphene oxide to prepare the electrodes. We found that the resistivity of electrode decreased with increasing the amount of graphene oxide. As a result, the charge-transfer resistance of cell obtained by electrochemical impedance analysis was decreased with increasing the amount of graphene oxide. The maximum photovoltaic conversion efficiency of DSC can reach as high as 7.424 % in acetonitrile-based electrode.
總目錄
摘要 I
Abstract II
總目錄 III
圖目錄 VII
表目錄 XIII
第一章 緒論
1.1前言 1
1.2太陽能發展歷史 3
1.3太陽能電池種類 5
1.3.1矽基太陽能電池 5
1.3.2 化合物太陽能電池 6
1.3.3有機太陽能電池 7
1.4染料敏化太陽能電池的發展 9
1.5基本結構與工作原理 10
1.6電池各部元件簡介 12
1.6.1光陽極及其奈米結構 12
1.6.2光敏化染料 16
1.6.3電解液 19
1.6.4對應電極 20
1.7 對應電極相關文獻之探討 21
1.8研究動機 24
第二章 實驗方法與步驟
2.1 白金薄膜製成之元件 25
2.1.1導電基材前處理 25
2.1.2 電鍍液的配製 27
2.1.3 以電泳方式製作白金電極 29
2.2 活性碳/氧化石墨烯混摻薄膜製成之元件 32
2.2.1 氧化石墨烯合成 32
2.2.2 配製活性碳/氧化石墨烯混摻電泳液 34
2.2.3以電泳方式製作活性碳/氧化石墨烯混摻電極 36
2.2.4以旋轉塗佈方式製備活性碳電極 38
2.3 元件組裝 40
2.4 元件的測量 42
2.5 實驗儀器與藥品 44
2.5.1實驗藥品 44
2.5.2 實驗儀器 47
2.5.3 材料特性分析儀器 48
2.5.4 電化學特性分析儀器 49
第三章 結果與討論
3.1 白金薄膜之材料特性分析與探討 53
3.1.1 白金薄膜之表面微結構分析 53
3.1.2 白金顆粒之型態分析 55
3.1.3 白金薄膜之光學特性分析 58
3.1.4 白金薄膜之能量分散分析儀(EDS)定量分析 60
3.1.5 白金薄膜經元件化之光電化學特性分析 62
3.2活性碳/氧化石墨烯混摻薄膜之材料特性分析與探討 70
3.2.1活性碳/氧化石墨烯混摻薄膜之表面微結構分析 70
3.2.2活性碳/氧化石墨烯混摻薄膜之截面分析 76
3.2.3活性碳/氧化石墨烯混摻薄膜之定量分析 82
3.2.4活性碳/氧化石墨烯混摻薄膜電阻分析 84
3.2.5交流阻抗分析分析 88
3.2.6活性碳/氧化石墨烯混摻薄膜經元件化之光電特性分析 91
3.2.7循環伏安分析 103
第四章 結論
參考文獻 108
1.張正華, 李陵嵐, 葉楚平, 揚平華, 馬振基, 有機與塑膠太陽能電池, 2007, 五南圖書出版股份有限公司.

2.F. Svelto, C. Flores, A. Caon, R. Contini, E. Rossi, The Italian activities on GaAs solar cells for space applications: Achieved results and future programmes. Solar Energy Materials and Solar Cells, 1994. 35(0). 99.

3.T. Toyama, T. Yamamoto, H. Okamoto, Interfacial mixed-crystal layer in CdSCdTe heterostructure elucidated by electroreflectance spectroscopy. Solar Energy Materials and Solar Cells, 1997. 49(1–4). 213.

4.B.T. Boiko, G.S. Khripunov, V.B. Yurchenko, H.E. Ruda, Photovoltaic properties in CdS/CdTe thin-film heterosystems with graded-gap interfaces. Solar Energy Materials and Solar Cells, 1997. 45(4). 303.

5.W. Cai, X. Gong, Y. Cao, Polymer solar cells: Recent development and possible routes for improvement in the performance. Solar Energy Materials and Solar Cells, 2010. 94(2). 114.

6.F.C. Krebs, et al., A round robin study of flexible large-area roll-to-roll processed polymer solar cell modules. Solar Energy Materials and Solar Cells, 2009. 93(11). 1968.

7.Q. Dong, Y. Zhou, J. Pei, Z. Liu, Y. Li, S. Yao, J. Zhang, W. Tian, All-spin-coating vacuum-free processed semi-transparent inverted polymer solar cells with PEDOT:PSS anode and PAH-D interfacial layer. Organic Electronics, 2010. 11(7). 1327.

8.Z. Hu, J. Zhang, S. Xiong, Y. Zhao, Performance of polymer solar cells fabricated by dip coating process. Solar Energy Materials and Solar Cells, 2012. 99(0). 221.





9.A. Colsmann, M. Reinhard, T.-H. Kwon, C. Kayser, F. Nickel, J. Czolk, U. Lemmer, N. Clark, J. Jasieniak, A.B. Holmes, D. Jones, Inverted semi-transparent organic solar cells with spray coated, surfactant free polymer top-electrodes. Solar Energy Materials and Solar Cells, 2012. 98(0). 118.

10.B.E. Hardin, H.J. Snaith, M.D. McGehee, The renaissance of dye-sensitized solar cells. Nat Photon, 2012. 6(3). 162.

11.A. Terenin, E. Putzeiko, I. Akimov, Energy transfer in systems of connected organic molecules. Discussions of the Faraday Society, 1959. 27. 83.

12.P.K. Baviskar, J.B. Zhang, V. Gupta, S. Chand, B.R. Sankapal, Nanobeads of zinc oxide with rhodamine B dye as a sensitizer for dye sensitized solar cell application. Journal of Alloys and Compounds, 2012. 510(1). 33.

13.W.M. Campbell, A.K. Burrell, D.L. Officer, K.W. Jolley, Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell. Coordination Chemistry Reviews, 2004. 248(13–14). 1363.

14.T. Inoue, S.S. Pandey, N. Fujikawa, Y. Yamaguchi, S. Hayase, Synthesis and characterization of squaric acid based NIR dyes for their application towards dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2010. 213(1). 23.

15.R.F. Howe, M. Gratzel, EPR observation of trapped electrons in colloidal titanium dioxide. The Journal of Physical Chemistry, 1985. 89(21). 4495.

16.B. O’regan, M. Grätzel, A low-cost, high-efficiiency solar cell based on dye-sensitized colloidal TiO2 film. Nature, 1991. 353. 737.

17.F. T. Kong, S. Y. Dai, K. J. Wang, Review of Recent Progress in Dye Sensitized Solar Cells. Advances in OptoElectronics, 2007. 2007. 1.

18.M. Grätzel, Photoelectrochemical cells. Nature, 2001. 414(6861). 338.



19.D. Dambournet, I. Belharouak, K. Amine, Tailored Preparation Methods of TiO2 Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties†. Chemistry of Materials, 2010. 22(3). 1173.

20.W.Q. Fang, X. Q. Gong, H.G. Yang, On the Unusual Properties of Anatase TiO2 Exposed by Highly Reactive Facets. The Journal of Physical Chemistry Letters, 2011. 2(7). 725.

21.B. Koo, J. Park, Y. Kim, S. H. Choi, Y. E. Sung, T. Hyeon, Simultaneous Phase- and Size-Controlled Synthesis of TiO2 Nanorods via Non-Hydrolytic Sol−Gel Reaction of Syringe Pump Delivered Precursors. The Journal of Physical Chemistry B, 2006. 110(48). 24318.

22.S.S. Mali, P.S. Shinde, C.A. Betty, P.N. Bhosale, W.J. Lee, P.S. Patil, Nanocoral architecture of TiO2 by hydrothermal process: Synthesis and characterization. Applied Surface Science, 2011. 257(23). 9737.

23.H. F. Wang, L. Y. Chen, W. N. Su, J. C. Chung, B. J. Hwang, Effect of the Compact TiO2 Layer on Charge Transfer between N3 Dyes and TiO2 Investigated by Raman Spectroscopy. The Journal of Physical Chemistry C, 2010. 114(7). 3185.

24.T. Lopez Luke, A. Wolcott, L. p. Xu, S. Chen, Z. Wen, J. Li, E. De La Rosa, J.Z. Zhang, Nitrogen-Doped and CdSe Quantum-Dot-Sensitized Nanocrystalline TiO2 Films for Solar Energy Conversion Applications. The Journal of Physical Chemistry C, 2008. 112(4). 1282.

25.Z. S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordination Chemistry Reviews, 2004. 248(13–14). 1381.

26.Z. S. Wang, T. Yamaguchi, H. Sugihara, H. Arakawa, Significant Efficiency Improvement of the Black Dye-Sensitized Solar Cell through Protonation of TiO2 Films. Langmuir, 2005. 21(10). 4272.



27.P. Wang, S.M. Zakeeruddin, R. Humphry-Baker, J.E. Moser, M. Grätzel, Molecular-Scale Interface Engineering of TiO2 Nanocrystals: Improve the Efficiency and Stability of Dye-Sensitized Solar Cells. Advanced Materials, 2003. 15(24). 2101.

28.A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-Sensitized Solar Cells. Chemical Reviews, 2010. 110(11). 6595.

29.J.G. Rowley, B.H. Farnum, S. Ardo, G.J. Meyer, Iodide Chemistry in Dye-Sensitized Solar Cells: Making and Breaking I−I Bonds for Solar Energy Conversion. The Journal of Physical Chemistry Letters, 2010. 1(20). 3132.

30.H. Wang, X. Liu, Z. Wang, H. Li, D. Li, Q. Meng, L. Chen, Effect of Iodine Addition on Solid-State Electrolyte LiI/3-Hydroxypropionitrile (1:4) for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B, 2006. 110(12). 5970.

31.Z. Huo, S. Dai, C. Zhang, F. Kong, X. Fang, L. Guo, W. Liu, L. Hu, X. Pan, K. Wang, Low Molecular Mass Organogelator Based Gel Electrolyte with Effective Charge Transport Property for Long-Term Stable Quasi-Solid-State Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B, 2008. 112(41). 12927.

32.L. Y. Lin, P. C. Nien, C. P. Lee, K. W. Tsai, M. H. Yeh, R. Vittal, K. C. Ho, Low-Temperature Flexible Photoanode and Net-Like Pt Counter Electrode for Improving the Performance of Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 2010. 114(49). 21808.

33.X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, E. Abe, Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell. Journal of Electroanalytical Chemistry, 2004. 570(2). 257.

34.S.S. Jeon, C. Kim, J. Ko, S.S. Im, Pt Nanoparticles Supported on Polypyrrole Nanospheres as a Catalytic Counter Electrode for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 2011. 115(44). 22035.


35.P. Hasin, M.A. Alpuche-Aviles, Y. Li, Y. Wu, Mesoporous Nb-Doped TiO2 as Pt Support for Counter Electrode in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 2009. 113(17). 7456.

36.X. Fang, T. Ma, G. Guan, M. Akiyama, E. Abe, Performances characteristics of dye-sensitized solar cells based on counter electrodes with Pt films of different thickness. Journal of Photochemistry and Photobiology A: Chemistry, 2004. 164(1–3). 179.

37.S. Ito, T.N. Murakami, P. Comte, P. Liska, C. Grätzel, M.K. Nazeeruddin, M. Grätzel, Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films, 2008. 516(14). 4613.

38.S. S. Kim, Y. C. Nah, Y. Y. Noh, J. Jo, D. Y. Kim, Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells. Electrochimica Acta, 2006. 51(18). 3814.

39.E. Ramasamy, J. Chun, J. Lee, Soft-template synthesized ordered mesoporous carbon counter electrodes for dye-sensitized solar cells. Carbon, 2010. 48(15). 4563.

40.E. Ramasamy, J. Lee, Ferrocene-derivatized ordered mesoporous carbon as high performance counter electrodes for dye-sensitized solar cells. Carbon, 2010. 48(13). 3715.

41.G. wang, L. Wang, W. Xing, S. Zhuo, A novel counter electrode based on mesoporous carbon for dye-sensitized solar cell. Materials Chemistry and Physics, 2010. 123(2-3). 690.

42.C. T. Hsieh, B. H. Yang, J. Y. Lin, One- and two-dimensional carbon nanomaterials as counter electrodes for dye-sensitized solar cells. Carbon, 2011. 49(9). 3092.

43.Y. Xiao, J. Wu, G. Yue, J. Lin, M. Huang, Z. Lan, Low temperature preparation of a high performance Pt/SWCNT counter electrode for flexible dye-sensitized solar cells. Electrochimica Acta, 2011. 56(24). 8545.


44.H. J. Shin, S.S. Jeon, S.S. Im, CNT/PEDOT core/shell nanostructures as a counter electrode for dye-sensitized solar cells. Synthetic Metals, 2011. 161(13-14). 1284.

45.A. Mathew, G.M. Rao, N. Munichandraiah, Dye sensitized solar cell based on platinum decorated multiwall carbon nanotubes as catalytic layer on the counter electrode. Materials Research Bulletin, 2011. 46(11). 2045.

46.C. S. Chou, C. I. Huang, R. Y. Yang, C. P. Wang, The effect of SWCNT with the functional group deposited on the counter electrode on the dye-sensitized solar cell. Advanced Powder Technology, 2010. 21(5). 542.

47.T. Hino, Y. Ogawa, N. Kuramoto, Preparation of functionalized and non-functionalized fullerene thin films on ITO glasses and the application to a counter electrode in a dye-sensitized solar cell. Carbon, 2006. 44(5). 880.

48.T. Battumur, S.H. Mujawar, Q.T. Truong, S.B. Ambade, D.S. Lee, W. Lee, S. H. Han, S. H. Lee, Graphene/carbon nanotubes composites as a counter electrode for dye-sensitized solar cells. Current Applied Physics, 2011.

49.D.W. Zhang, X.D. Li, H.B. Li, S. Chen, Z. Sun, X.J. Yin, S.M. Huang, Graphene-based counter electrode for dye-sensitized solar cells. Carbon, 2011. 49(15). 5382.

50.M. H. Yeh, C. P. Lee, L. Y. Lin, P. C. Nien, P. Y. Chen, R. Vittal, K. C. Ho, A composite poly(3,3-diethyl-3,4-dihydro-2H-thieno-[3,4-b][1,4]-dioxepine) and Pt film as a counter electrode catalyst in dye-sensitized solar cells. Electrochimica Acta, 2011. 56(17). 6157.

51.J. Zhang, X. Li, W. Guo, T. Hreid, J. Hou, H. Su, Z. Yuan, Electropolymerization of a poly(3,4-ethylenedioxythiophene) and functionalized, multi-walled, carbon nanotubes counter electrode for dye-sensitized solar cells and characterization of its performance. Electrochimica Acta, 2011. 56(9). 3147.




52.K. M. Lee, P. Y. Chen, C. Y. Hsu, J. H. Huang, W. H. Ho, H. C. Chen, K. C. Ho, A high-performance counter electrode based on poly(3,4-alkylenedioxythiophene) for dye-sensitized solar cells. Journal of Power Sources, 2009. 188(1). 313.

53.J. Halme, M. Toivola, A. Tolvanen, P. Lund, Charge transfer resistance of spray deposited and compressed counter electrodes for dye-sensitized nanoparticle solar cells on plastic substrates. Solar Energy Materials and Solar Cells, 2006. 90(7-8). 872.

54.Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen, Q. Meng, Application of carbon materials as counter electrodes of dye-sensitized solar cells. Electrochemistry Communications, 2007. 9(4). 596.

55.S. S. Kim, K. W. Park, J. H. Yum, Y. E. Sung, Dye-sensitized solar cells with Pt–NiO and Pt–TiO2 biphase counter electrodes. Journal of Photochemistry and Photobiology A: Chemistry, 2007. 189(2-3). 301.

56.P. Li, J. Wu, J. Lin, M. Huang, Z. Lan, Q. Li, Improvement of performance of dye-sensitized solar cells based on electrodeposited-platinum counter electrode. Electrochimica Acta, 2008. 53(12). 4161.

57.E. Ramasamy, W.J. Lee, D.Y. Lee, J.S. Song, Spray coated multi-wall carbon nanotube counter electrode for tri-iodide (I3-) reduction in dye-sensitized solar cells. Electrochemistry Communications, 2008. 10(7). 1087.

58.C. S. Chou, R. Y. Yang, M. H. Weng, C. I. Huang, The applicability of SWCNT on the counter electrode for the dye-sensitized solar cell. Advanced Powder Technology, 2009. 20(4). 310.

59.P. Li, J. Wu, J. Lin, M. Huang, Y. Huang, Q. Li, High-performance and low platinum loading Pt/Carbon black counter electrode for dye-sensitized solar cells. Solar Energy, 2009. 83(6). 845.

60.M. Y. Yen, C. Y. Yen, S. H. Liao, M. C. Hsiao, C. C. Weng, Y. F. Lin, C. C.M. Ma, M. C. Tsai, A. Su, K. K. Ho, A novel carbon-based nanocomposite plate as a counter electrode for dye-sensitized solar cells. Composites Science and Technology, 2009. 69(13). 2193.
61.S. Murashima, H. Kanamori, F. Ishibashi, Correction Devisors for the Four-Point Probe Resistivity Measurement on Cylindrical Semiconductors. Japanese Journal of Applied Physics, 1970. 9(1).

62. 李陸玲, 陳建仲, 刁維光,染料敏化太陽能電池的基本原理與元件最佳化策略研究, 化工, 2009, 52(2).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top