(3.227.0.150) 您好!臺灣時間:2021/05/08 10:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:黃俊翰
研究生(外文):Chun-Han Huang
論文名稱:鈀/鉑合金奈米觸媒之催化氧氣還原反應特性探討:碳材載體影響
論文名稱(外文):The Carbon Substrate Effect for Pd3Pt1 Catalysts on Oxygen Reduction Reaction
指導教授:李建良李建良引用關係
指導教授(外文):Chien-Liang Lee
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:90
中文關鍵詞:氧氣還原反應石墨烯觸媒載體
外文關鍵詞:GrapheneOxygen reduction reactionCatalyst support
相關次數:
  • 被引用被引用:0
  • 點閱點閱:562
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
以具缺陷石墨烯奈米片(GNS)、單層奈米碳管(SWCNT)和奈米石墨纖維(GNF)作為鈀-鉑合金觸媒之載體,用以探討使用不同碳材作為觸媒基材對電催化氧氣還原反應之影響。在本研究中,以Pd3Pt1做為觸媒並以上述三種奈米碳材為載體,成功製備出以石墨烯奈米片(GNS)為載體之Pd3Pt1奈米複合觸媒(Pd3Pt1/GNS)、 以單層奈米碳管為載體之Pd3Pt1奈米複合觸媒(Pd3Pt1/SWCNT)、以奈米石墨纖維為載體之Pd3Pt1奈米複合觸媒(Pd3Pt1/GNF),使用穿透性電子顯微鏡鑑定其合金形貌,觀察到其粒徑大小分別為4.0nm、3.0nm、3.7nm,發現基材對合成之Pd3Pt1奈米粒子粒徑並無明顯影響,且以選區電子繞射與X-ray繞射儀觀察其結晶形態,並使用拉曼光譜鑑定純碳材和合成觸媒之碳材結表面結構。
觸媒利用旋轉環-盤電極(Ring-disk rotating electrode;RRDE)在酸性電解質(0.5M H2SO4)環境中,進行純碳材與觸媒電化學特性分析。從純碳材循環伏安法曲線圖,可見氧化石墨烯經迴流程序,已經還原成具缺陷的石墨烯奈米片,並於0.65V(vs. SCE)下比較觸媒鈀-鉑/石墨烯奈米片(Pd3Pt1/GNS)、鈀-鉑/單層碳管(Pd3Pt1/SWCNT)、鈀-鉑/石墨纖維(Pd3Pt1/GNF)與商業鉑/碳黑(Pt/C)觸媒作為氧氣還原反應活性,其質傳修正質量活性電流密度分別為6.23×10-3 mAμg-1Pt、4.33×10-3 mAμg-1Pt、2.19×10-3 mAμg-1Pt、1.71×10-3mAμg-1Pt,Pd3Pt1/GNS具有較高質量活性。
Using defective graphene nanpsheets (GNS), single-wall carbon nanotubes (SWCNT) and graphite nanofibers (GNF) as different supports for Pd3Pt1 catalysts toward acidic oxygen reduction reactions (ORRs) has been investigated. Herein, the GNS-supported Pd3Pt1 nanocomposites (Pd3Pt1/GNS), the SWCNT-supported Pd3Pt1 nanocomposites (Pd3Pt1/SWCNT), the GNF-supported Pd3Pt1 nanocomposite (Pd3Pt1/GNF) were successfully prepared by self-regulated surfactant. Based on measurements supported by transmission electron microscopy, the average sizes of these alloy particles on GNS, SWCNT, and CNF were 4nm, 3nm, and 3.7nm, respectively. This indicates that the substrate did not significantly influence the nanoparticle sizes during the synthesis period. As identification by Raman spectrum, the intensity ratio of D-bond to G-bond peak (R) increased from 1.01 to 1.23 after the Pd3Pt1 catalysts attaching to GNS. Simultaneously, the increases of 0.02 to 0.61 and 1.08 to 1.12 were in the cases of SWCNT and GNF, respectively. This could be due to partial destruction of the carbon rings during synthesis process, especially for SWCNT.
The ORR activities of these three Pd3Pt1/ carbon support catalysts were investigated in a acidic solution (0.5M H2SO4) at 0.65V (vs. SCE), and the parameters were determined by the rotating ring-disk electrode (RRDE) technique. The data shows the mass activity (jm) Pd3Pt1/GNS, Pd3Pt1/SWCNT, Pd3Pt1/CNF, commercial catalyst E-TEK (Pt/C) were 6.23×10-3 mAμg-1Pt, 4.33×10-3 mAμg-1Pt, 2.19×10-3 mAμg-1Pt, and 1.71×10-3mAμg-1Pt, respectively. Among these catalysts, the Pd3Pt1/GNS has highest activity in mass.
摘要 I
Abstract III
致謝 IV
總目錄 V
表目錄 VIII
圖目錄 IX
圖目錄 IX
第1章 諸論 1
1.1. 研究動機 3
1.2. 研究目的 4
第2章 文獻回顧 7
2.1. 燃料電池 7
2.1.1. 發電原理與結構 7
2.1.2. 發電效率 9
2.2. 氧氣還原反應 11
2.2.1. 溶液酸鹼性對氧氣還原反應機制的影響 12
2.2.2. 氧氣吸附模式 13
2.2.3. 合金化改善觸媒活性 15
2.3. 觸媒載體 20
2.3.1. 碳材作為載體介紹 20
2.3.2. 氧化石墨烯與石墨烯 25
2.4. 反應性微胞法製備觸媒介紹 30
2.5. 電化學分析方法與原理 31
2.5.1. 循環伏安法 31
2.5.2. 過電位與極化曲線 34
2.5.3. 旋轉環-盤電極 37
第3章 實驗方法 40
3.1. 實驗藥品 40
3.2. 實驗儀器 41
3.3. 氧化石墨的製備 42
3.4. Pd3Pt1/C的製備與物性檢測 45
3.4. 電化學分析 47
3.5. 實驗流程圖 50
第4章 結果與討論 51
4.1. 物理特性分析 51
4.1.1. 氧化石墨的鑑定 51
4.1.2. Pd3Pt1/C鑑定 54
4.2. 氧氣還原反應之電化學特性分析 60
第5章 結論 69
參考文獻 70
自述 75
[1]衣寶廉. 燃料電池-原理與應用. 五南圖書 (2005).
[2]Hitotsuyanagi A, Kondo S, Nakamura M, Hoshi N. Structural effects on the oxygen reduction reaction on n(111)-(100) series of Pd. J. Electroanal. Chem. 657 (2011) 123-7.
[3]Kabbabi A, Gloaguen F, Andolfatto F, Durand R. Particle size effect for oxygen reduction and methanol oxidation on Pt/C inside a proton exchange membrane. J Electroanal. Chem. 373 (1994) 251-4.
[4]Wang JX, Inada H, Wu LJ, Zhu YM, Choi YM, Liu P, et al. Oxygen Reduction on Well-Defined Core-Shell Nanocatalysts: Particle Size, Facet, and Pt Shell Thickness Effects. J. Am. Chem. Soc. 131 (2009) 17298-302.
[5]He W, Liu JY, Qiao YJ, Zou ZQ, Zhang XG, Akins DL, et al. Simple preparation of Pd-Pt nanoalloy catalysts for methanol-tolerant oxygen reduction. J. Power Sources 195 (2010) 1046-50.
[6]Yao Z, Nie H, Yang Z, Zhou X, Liu Z, Huang S. Catalyst-free synthesis of iodine-doped graphene via a facile thermal annealing process and its use for electrocatalytic oxygen reduction in an alkaline medium. Chem. Commun. 48 (2012) 1027-9.
[7]Tsai CW, Tu MH, Chen CJ, Hung TF, Liu RS, Liu WR, et al. Nitrogen-doped graphene nanosheet-supported non-precious iron nitride nanoparticles as an efficient electrocatalyst for oxygen reduction. Rsc Adv. 1 (2011) 1349-57.
[8]Gasteiger HA, Marković NM. Just a Dream—or Future Reality? Science 324 (2009) 48-9.
[9]Aricò AS, Srinivasan S, Antonucci V. DMFCs: From Fundamental Aspects to Technology Development. Fuel Cells 1 (2001) 133-61.
[10]Saejeng Y, Tantavichet N. Preparation of Pt–Co alloy catalysts by electrodeposition for oxygen reduction in PEMFC. J. Appl. Electrochem. 39 (2009) 123-34.
[11]Jeon TY, Yoo SJ, Cho YH, Lee KS, Kang SH, Sung YE. Influence of Oxide on the Oxygen Reduction Reaction of Carbon-Supported Pt−Ni Alloy Nanoparticles. J. Phys. Chem. C 113 (2009) 19732-9.
[12]Taufany F, Pan CJ, Chou H-L, Rick J, Chen YS, Liu DG, et al. Relating Structural Aspects of Bimetallic Pt3Cr1/C Nanoparticles to Their Electrocatalytic Activity, Stability, and Selectivity in the Oxygen Reduction Reaction. Chem –Eur J. 17 (2011) 10724-35.
[13]He W, Jiang H, Zhou Y, Yang S, Xue X, Zou Z, et al. An efficient reduction route for the production of Pd-Pt nanoparticles anchored on graphene nanosheets for use as durable oxygen reduction electrocatalysts. Carbon 50 (2012) 265-74.
[14]Lee YW, Ko AR, Kim DY, Han SB, Park KW. Octahedral Pt-Pd alloy catalysts with enhanced oxygen reduction activity and stability in proton exchange membrane fuel cells. Rsc Adv. 2 (2012) 1119-25.
[15]Lee CL, Chiou HP. Methanol-tolerant Pd nanocubes for catalyzing oxygen reduction reaction in H2SO4 electrolyte. Appl. Catal. B-Environ. 117 (2012) 204-11.
[16]Suo Y, Zhuang L, Lu J. First-Principles Considerations in the Design of Pd-Alloy Catalysts for Oxygen Reduction. Angew. Chem. 119 (2007) 2920-2.
[17]毛宗强. 燃料电池. 化学工业出版社 (2005).
[18]Debe MK, Steinbach AJ, Hendricks SM, Kurkowski MJ. Fuel Cell Components Program. 3M Company (2007).
[19]Dresselhaus M, Crabtree G, Buchanan M. Basic Research Needs for the Hydrogen Economy. DOE (2003).
[20] Jarvi TD, Stuve EM. Electrocatalysis (1998) 75-113.
[21]Wroblowa HS, Y.C. P, Razumney G. Electroreduction of oxygen-new mechanistic criterion. J. Electroanal. chem. 69 (1976) 195-201.
[22]Kinoshita K. Electrochemical oxygen technology. InterScience (1992).
[23]Xu WL, Zhou XC, Liu CP, Xing W, Lu TH. The real role of carbon in Pt/C catalysts for oxygen reduction reaction. Electrochem. Commun. 9 (2007) 1002-6.
[24]Ramos-Sanchez G, Yee-Madeira H, Solorza-Feria O. PdNi electrocatalyst for oxygen reduction in acid media. Int. J. Hydrogen Energy 33 (2008) 3596-600.
[25]Santos L, Oliveira CHF, Moraes IR, Ticianelli EA. Oxygen reduction reaction in acid medium on Pt-Ni/C prepared by a microemulsion method. J. Electroanal. Chem. 596 (2006) 141-8.
[26]Zhang K, Yue Q, Chen G, Zhai Y, Wang L, Wang H, et al. Effects of Acid Treatment of Pt−Ni Alloy Nanoparticles@Graphene on the Kinetics of the Oxygen Reduction Reaction in Acidic and Alkaline Solutions. The J. Phys. Chem. C 115 (2010) 379-89.
[27]Toda T, Igarashi H, Uchida H, Watanabe M. Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co. J. Electrochem. Soc. 146 (1999) 3750-6.
[28]Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 128 (2006) 8813-9.
[29]Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. Int. Ed 45 (2006) 2897-901.
[30]Jalan V, Taylor E J. Importance of interatomic spacing in catalytic reduction of oxygen in phosphoric acid. J. Electrochem. Soc. 130 (1983) 2299-302.
[31]Ruban A, Hammer B, Stoltze P, Skriver HL, Norskov JK. Surface electronic structure and reactivity of transition and noble metals. J. Mol. Catal. A:Chem. 115 (1997) 421-9.
[32]Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, et al. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 108 (2004) 17886-92.
[33]Britto PJ, Santhanam KSV, Rubio A, Alonso JA, Ajayan PM. Improved Charge Transfer at Carbon Nanotube Electrodes. Adv. Mater.11 (1999) 154-7.
[34]Lee CL, Chiou HP, Wu SC, Wu CC. Alloy ratio effect of Pd/Pt nanoparticles on carbon nanotubes for catalysing methanol-tolerant oxygen reduction. Electrochim. Acta 56 (2010) 687-92.
[35]Shao Y, Yin G, Gao Y, Shi P. Durability Study of Pt/C and Pt/CNTs Catalysts under Simulated PEM Fuel Cell Conditions. J. Electrochem. Soc. 153 (2006) A1093-A7.
[36]Guo J, Sun G, Wang Q, Wang G, Zhou Z, Tang S, et al. Carbon nanofibers supported Pt–Ru electrocatalysts for direct methanol fuel cells. Carbon 44 (2006) 152-7.
[37]Lee CL, Chao YJ, Chen CH, Chiou HP, Syu CC. Graphite-nanofiber-supported porous Pt–Ag nanosponges: Synthesis and oxygen reduction electrocatalysis. Int. J. Hydrogen Energy 36 (2011) 15045-51.
[38]Liu YC, Qiu XP, Huang YQ, Zhu WT. Methanol electro-oxidation on mesocarbon microbead supported Pt catalysts. Carbon 40 (2002) 2375-80.
[39]Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science 306 (2004) 666-9.
[40]Geim AK, Novoselov KS. The rise of graphene. Nat. Mater. 6 (2007) 183-91.
[41]Li Y, Fan X, Qi J, Ji J, Wang S, Zhang G, et al. Palladium nanoparticle-graphene hybrids as active catalysts for the Suzuki reaction. Nano Res. 3 (2010) 429-37.
[42]Dong LF, Gari RRS, Li Z, Craig MM, Hou SF. Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 48 (2010) 781-7.
[43]Kamat PV. Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support. J. Phys. Chem. Lett. 1 (2009) 520-7.
[44]Li YM, Tang LH, Li JH. Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites. Electrochem. Commun. 11 (2009) 846-9.
[45]Kou R, Shao Y, Wang D, Engelhard MH, Kwak JH, Wang J, et al. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem. Commun. 11 (2009) 954-7.
[46]Shen JF, Shi M, Li N, Yan B, Ma HW, Hu YZ, et al. Facile Synthesis and Application of Ag-Chemically Converted Graphene Nanocomposite. Nano Res. 3 (2010) 339-49.
[47]Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem. Soc. Rev. 39 (2010) 228-40.
[48]Hummers WS, Offeman RE. PREPARATION OF GRAPHITIC OXIDE. J. Am. Chem. Soc. 80 (1958) 1339-.
[49]Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 11 (1999) 771-8.
[50]Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, et al. Improved Synthesis of Graphene Oxide. ACS Nano 4 (2010) 4806-14.
[51]Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, et al. Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides. Chem. Mater. 18 (2006) 2740-9.
[52]Xu C, Wang X, Zhu JW. Graphene-Metal Particle Nanocomposites. J. Phys. Chem. C 112 (2008) 19841-5.
[53]Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L. Water-Soluble Graphene Covalently Functionalized by Biocompatible Poly-l-lysine. Langmuir 25 (2009) 12030-3.
[54]Aravind SSJ, Ramaprabhu S. Surfactant free graphene nanosheets based nanofluids by in-situ reduction of alkaline graphite oxide suspensions. J. Appl. Phys. 110 (2011) 124326-5.
[55]Li D, Muller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nat. Nano 3 (2008) 101-5.
[56]Hamwi A, Marchand V. Some chemical and electrochemical properties of graphite oxide. J. Phys. Chem. Solids 57 (1996) 867-72.
[57]Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45 (2007) 1558-65.
[58]Liu K, Zhang J, Yang G, Wang C, Zhu JJ. Direct electrochemistry and electrocatalysis of hemoglobin based on poly(diallyldimethylammonium chloride) functionalized graphene sheets/room temperature ionic liquid composite film. Electrochem. Commun. 12 (2010) 402-5.
[59]Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, et al. Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation. Adv. Mater. 20 (2008) 4490-3.
[60]Shin H-J, Kim KK, Benayad A, Yoon S-M, Park HK, Jung I-S, et al. Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Adv. Funct. Mater. 19 (2009) 1987-92.
[61]Lin Z, Yao Y, Li Z, Liu Y, Li Z, Wong CP. Solvent-Assisted Thermal Reduction of Graphite Oxide. J. Phys. Chem. C 114 (2010) 14819-25.
[62]Lee CL, Wan CC, Wang YY. Synthesis of metal nanoparticles via self-regulated reduction by an alcohol surfactant. Adv. Funct. Mater. 11 (2001) 344-7.
[63]Lee CL, Ju YC, Chou PT, Huang YC, Kuo LC, Oung JC. Preparation of Pt nanoparticles on carbon nanotubes and graphite nanofibers via self-regulated reduction of surfactants and their application as electrochemical catalyst. Electrochem. Commun. 7 (2005) 453-8.
[64]彭文權. 以沉積法製備甲醇燃料電池用之Pt-Ru雙金屬觸媒. 化學工程學系 (1997) 元智工學院.
[65]Tran TD, Langer SH. Electrochemical measurement of platinum surface areas on particulate conductive supports. Anal. Chem. 65 (1993) 1805-7.
[66]Chierchie T, Mayer C, Lorenz WJ. Structural changes of surface oxide layers on palladium. J. Electroanal. Chem. Interfacial Electrochem. 135 (1982) 211-20.
[67]Jiang L, Hsu A, Chu D, Chen R. A highly active Pd coated Ag electrocatalyst for oxygen reduction reactions in alkaline media. Electrochim. Acta. 55 (2010) 4506-11.
[68]Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J. Electroanal. Chem. 495 (2001) 134-45.
[69]Tuinstra F, Koenig JL. Raman Spectrum of Graphite. J. Chem. Phys. 53 (1970) 1126-30.
[70]C.Ferrari A, Robertson J. Raman Spectroscopy in Carbons: form Nanotubes to Diamond. RSC (2004).
[71]Santos LGRA, Oliveira CHF, Moraes IR, Ticianelli EA. Oxygen reduction reaction in acid medium on Pt–Ni/C prepared by a microemulsion method. J. Electroanal. Chem. 596 (2006) 141-8.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔