(35.175.212.130) 您好!臺灣時間:2021/05/15 11:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:沈威政
研究生(外文):Shen Wei Chen
論文名稱:以離子交換樹脂吸附鉬(VI)離子之研究
論文名稱(外文):A study on the adsorption of Molybdenum (VI) ions by ion exchange resin
指導教授:張健桂
指導教授(外文):Cheng Chien Kuei
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:101
畢業學年度:100
語文別:中文
論文頁數:120
中文關鍵詞:強鹼性陰離子交換樹脂鉬酸根離子恆溫吸附管柱試驗離子交換容量
外文關鍵詞:trong base anion exchange resinMolybdate ion adsorption isothermColumn experimentIon exchange capacity
相關次數:
  • 被引用被引用:9
  • 點閱點閱:1787
  • 評分評分:
  • 下載下載:180
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用強鹼性陰離子交換樹脂,經過硝酸多次洗滌浸泡調整成硝酸型陰離子交換樹脂(R-NO3) ,再以之吸附去除廢水中的鉬。所有實驗都設計在pH6到9之間進行以確保含鉬化合物均以鉬酸根離子(MoO42-)的型式存在,並且處理後放流水之pH值符合放流水標準。
批次實驗結果顯示R-NO3對鉬酸根離子之飽和吸附量約為47500 mg/L;在實驗範圍內溶液的pH值改變對飽和吸附量影響不大,且吸附行為符合Langmuir恆溫吸附模式。
管柱實驗結果顯示由含100、300、500mg-Mo/L之模擬廢水測得的總離子交換容量分別為60000 mg-Mo/L-resin、64500 mg-Mo/L-resin、55000 mg-Mo/L-resin,操作離子交換容量分別為55000 mg-Mo/L-resin、65000 mg-Mo/L-resin、50000 mg-Mo/L-resin,基本上無太大差異顯示R-NO3對鉬酸根離子的親和性良好。
基於實廠廢水經常含有數百至近千mg/L磷酸與醋酸之經驗,利用管柱實驗分別測試在含這些干擾離子的情況下,R-NO3吸附鉬酸根離子的效果受到的影響。結果發現含1000 mg/L磷酸時總離子交換容量由64500 mg-Mo/L-resin降低至15000 mg-Mo/L-resin,操
作離子交換容量由60000 mg-Mo/L-resin降低至7500 mg-Mo/L-resin;含1000 mg/L醋酸時總離子交換容量由64500 mg-Mo/L-resin降低至63000 mg-Mo/L-resin,操作離子交換容量由60000 mg-Mo/L-resin降低至55000 mg-Mo/L-resin。吸附量明顯受磷酸根影響而減少,但醋酸根離子則較無影響,因此在處理光電業廢水時,普遍存在的磷酸根離子的干擾現象需要特別注意。
本研究也以管柱實驗測試某面板製造業實廠廢水,該廢水成分含:(鉬:7mg/L、磷酸:1300mg/L、醋酸濃度:450mg/L.),處理後放流水可低於法規要求的0.6mg-Mo/L。操作離子交換容量為26250 mg-Mo/L-resin,每次循環約可處理100倍床體積的廢水,再生後濃縮倍數約為7.6倍。
This study investigated the removal of molybdenum (Mo) from wastewater using a base anion exchange resin. The strong base anion exchange resin was soaked by nitric acid to convert to the type of nitrate anion (R-NO3). All solution pHs were controlled in the range of 6-9 to ensure MoO42- dominantly in wastewater and make sure the effluent pH could fulfill the environmental law.
The results showed that the maximum adsorption capacity of molybdate ion is about 47500 mg/L in batch experiments. Only a small adsorption capacity change was found by the variation of pHs. The adsorption behavior could follow the Langmuir adsorption isotherm model very well.
The column experiments demonstrated that the total ion exchange capacity is 60000, 64500, and 55000 mg Mo/L-resin at the concentrations of 100, 300, 500 and mg-Mo/L, respectively. Furthermore, the measured operating ion exchange capacity is 55000, 60000, and 50000 mg-Mo/L resin at the concentrations of 100, 300, 500 and mg-Mo/L, respectively, indicating that R-NO3 has a good affinity to molybdate ion.
The large amount of phosphoric acid and acetic acid (hundred to thousand mg/L) in actual wastewater will often affect the removal efficiency of nitrate anion resin. The ion competition was thus investigated in column experiments. The results revealed that ion exchange capacity was reduced from 64500 to 15000 mg-Mo/L-resin and the operation ion exchange capacity was reduced from 60000 to 7500 mg-Mo/L-resin when containing 1000 mg/L phosphoric acid in wastewater. The total ion exchange capacity was reduced from 64500 to 63000 mg-Mo/L-resin and the operating ion exchange capacity was reduced from 60000 to 55000 mg-Mo/L-resin when containing 1000 mg/L acetic acid. The adsorption capacity was significantly reduced by phosphate. Therefore, it should be noticed that the widespread interference of phosphate ions when treating the photovoltaic wastewater.
The panel manufacturing wastewater was further tested by column experiments for its Mo removal. The composition of the wastewater includes Mo 7 mg/L, phosphoric acid 1300 mg/L, and acetic acid 450 mg/L. The results showed that the concentration of Mo could comply with the effluent standards (0.6 mg of Mo/L) after the proposed method. The operating ion exchange capacity is 26250 mg of-Mo/L-resin while each loop can treat about 100 times the bed volume of wastewater and the regeneration concentration factor is about 7.6 folds.
目錄
摘要 i
英文摘要 iii
致謝 v
目錄 vii
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究目的與動機 2
1.3 研究內容 4
第二章 文獻回顧 5
2.1 鉬的基本性質 5
2.1.1 鉬之發現 5
2.1.2 鉬之生物毒性 7
2.1.3 鉬之應用 10
2.1.4 鉬之型式與濃度及pH值之關係 13
2.2 鉬廢水之處理方式 14
2.3 吸附理論 16
2.3.1 吸附原理 16
2.3.2 吸附劑之性質 18
2.3.3 恆溫吸附模式 22
2.3.4 吸附系統 25
2.4 離子交換之基本原理 31
2.4.1 離子交換之理論 32
2.4.2 離子交換樹脂之型式 36
2.4.3 離子交換樹脂之一般特性 39
2.4.4 離子交換之操作 41
2.4.5 離子交換樹脂之應用 42
第三章 實驗設備及方法 45
3.1 實驗藥品 45
3.2 實驗儀器 46
3.3 實驗方法與步驟 47
3.3.1 批次實驗 47
3.3.2 管柱實驗 52
3.4 實驗參數之計算 56
第四章 結果與討論 58
4.1 平衡時間之測定 58
4.2 等溫吸附實驗 59
4.3 恆溫吸附模式 63
4.4 鉬酸根離子(MoO42-)之離子交換管柱實驗 70
4.4.1 不同濃度MoO42-之動態吸附實驗 70
4.4.2 不同再生液之濃度對R-NO3之影響 72
4.4.3 不同流速之再生液對R-NO3之影響 73
4.5 干擾離子對MoO42-之離子交換管柱實驗 74
4.5.1 磷酸氫離子(HPO42-)與磷酸二氫離子(H2PO4-)對MoO42-在R-NO3中之影響 74
4.5.2 再生實驗 77
4.5.3 經歷HPO42-與H2PO4-干擾對R-NO3樹脂之吸附行為的影響 79
4.5.4 HPO42-對MoO42-在R-NO3中之影響 81
4.5.5 再生液濃度對再生效率之影響 84
4.5.6 經歷HPO42-干擾對R-NO3樹脂之吸附行為的影響 85
4.5.7 PO43-對MoO42-在R-NO3中之影響 86
4.5.8 再生實驗 88
4.5.9 Ac-對MoO42-在R-NO3中之影響 89
4.5.10 再生實驗 90
4.5.11 經歷Ac-干擾對R-NO3樹脂之吸附行為的影響 91
4.6 實廠廢水之處理 93
4.6.1 實廠廢水之玻璃管柱實驗 93
4.6.2 實廠廢水之再生 94
五 結論 95
參考文獻 97
【1】Coughlan;Barceloux“Elements and Their Compounds in the Environment”: Occurrence, Analysis and Biological Relevance, Second Edition Elements (1999).
【2】T. Mahesh, P.Venugopal“MenonQuercetinallievates oxidative stress in streptozotocin-induced diabetic rats”Phytotherapy Research pages 123~127 (2004).
【3】全球華人健康網 http://www.jjkkusa.com/modules/news/.
【4】R. Colin Johnson. E E Times News & Analysis“New material for semis said to beat silicon”(2011).
【5】E.Guibal,C.Milot,J.Roussy, “Influence of Hydrolysis Mechanisms on MolybdateSorption Isotherms Using Chitosan”Separation Science and Technology. 35:7, 1021-1038 (2000).
【6】R.Navarro,J.Guzma´n,I.Saucedo,J.Revilla,E.Guibal,“Recovery of Metal Ions by Chitosan: SorptionMechanisms and Influence of Metal Speciation”Macromol. Biosci. 3, 552–561(2003).
【7】李風亭,“重金屬鉬廢水的處理方法”,同濟大學(2010)。
【8】行政院勞委會,2010,化學品全球調和制度[GHS]。
【9】張晉“水處理工程與設計(汙淤水工程學污)”鼎茂圖書出版有限公司。
【10】楊萬發“水及廢水處理化學”茂昌圖書有限公司。
【11】R.F.Helms,“Evaluation of Ion Exchange for Demineralization of Wastewater,Master’s”Thesis,University of Colorado,Boulder,CO (1973).
【12】W.J.Jr.Weber,“Physicochemical Processes for Water Quality Control”, Wiley-Interscience,New York (1972).
【13】J.E.Salmon, and D.K.Hale,“Ion Exchange, Academic Press”,Inc, New York (1959).
【14】J.Inczedy, et al.,“Analytical of Ion Exchanrers, Pergamon Press”, Inc., New York (1966).
【15】J.W.Hassler,“purification with Activate Cardon”, Chemical Publishing Company,New York (1974).
【16】C.Namasivayam, , D.Sangeetha,“Removal of molybdate from water by adsorption onto ZnCl 2 activated coir pith carbon. ”Bioresour. Technol. 97,1194–1200, ( 2006).
【17】醫學百科http://big5.wiki8.com/.
【18】R. Mamtaz, D.H. Bache,“Reduction of arsenic in groundwater by coprecipitation with iron”, J. Water Supply: Res. Technol. AQUA 50,313–324.(2001).
【19】Y. Al-Wazzan, M. Safar, A. Mesri,“Reverse osmosis brine staging treatment of subsurface water Desalination”155,141–151 (2003).
【20】Y. Zhao, J.S. Taylor, S. Chellam,“Predicting RO/NF water quality by modified solution diffusion model and artificial neural networks”, J. Membr. Sci.263, 38–46,(2005).
【21】P.J. Phelan, S.V. Maltigod,“Adsorption of molybdate anion)MoO42-by sodium-saturated kaolinite”, Clays Clay Miner. 32 ,45–48(1984).
【22】H. Faghihian, A. Malekpour, M.G. Maragheh,“Adsorption of molybdate ion by natrolite and clinoptolite-rich tuffs”, Int. J. Environ. Pollut. 18 181–189, (2002).
【23】J.P. Gustafsson,“Modelling molybdate and tungstate adsorption to ferrihydrite”, Chem. Geol. 200,105–115, (2003).
【24】T. Fujita, G. Dodbiba, J. Sadaki, A. Shibayama, “Removal of anionic metal ions from wastewater by hydroxide-type adsorbents”, Chin. J. Process. Eng.6, 357–362, (2006).
【25】K. Bourikasj, T. Hiemstra, W.H. Van Riemsdijk, “Adsorption of molybdate monomers and polymers on titania with a multisite approach”, J. Phys.Chem. B 105,2393–2403, (2001).
【26】S.Goldberg,H.S.Forster,C.L.Godfre,“Molybdenum adsorption on oxides”, clay minerals and soils, Soil Sci. Soc. Am. J. 60 425–432, (1996).
【27】C.H. Wu, C.Y. Kuo, C.F. Lin, S.L. Lo,“Modeling competitive adsorption of molybdate, sulfate, selenate and selenite using a Freundlich-type multicomponent isotherm”, Chemosphere 47 283–292, (2002).
【28】Y.Li, Q.Yue, B.Gao,“Adsorption kinetics and desorption of Cu(II) and Zn(II) from aqueous solution onto humic acid”,Journal of hazardous materials,vol.178(1-3),pp.455-461,(2010).
【29】L.C.Lin,R.S.Juang,“Ion-exchnge kineics of Cu(II) and Zn(II) from aqueous solutions with two chelating resines”,Chemical Endineering Journal,vol.132(1-3),pp.205-213,(2007).
【30】F.Guzel,H.Yakut,G.Topal,“Determination of kinetic and equilibrium parameters of the batch adsorption of Mn(II),Co(II),Ni(II) and Cu(II) from arueous solution by black carrot residues, ”Journal of hazardous materials vol.153(3),pp.1275-1287,(2008).

【31】J.Rahchamani,H.Z.Mousavi,M.Behzad,“Adsorption of methyl violet from aqueous solution by polyacrylamide as an adsorbent:Isotherm and kinetic studies",Desalination(2010).
【32】L.Li,F.Liu,X.Jing,P.Ling,A.Li,“Displacwment mechanism of binary competitive adsorption for aqueous divalent metal ions onto a novel IDA-chelating resin:Isotherm and kinetic modeling ”,Water research,(2010).
【33】XS.Yi,WX.Shi,SL.Yu,Y.Wang,N.Sun,LM.Jin,S.Wang,“Isotherm and kinetic behavior of adsorption of anion polyacrylamide (APAM) from aqueous solution using two kinds of PVDF UF membranes",Journal of hazardous materials,(2011).
【34】C. A. Spindt et al., IEEE Trans. Electron Devices 38, p. 2355,( 1991).
【35】J. Vac. Sci. Technol. B 16, p. 807, (1998).
【36】R. B. Marcus et al., Appl. Phys. Lett 56, p. 236, (1990).
【37】L. Parameswaran et al., Vacuum Electrons Annual Review Abstracts, p. IV-7, San Diego, CA, May 2,( 1997).
【38】Bill McCutcheon,Canadian Minerals Year book,(1995).
【39】胡瑀婷,“金屬離子在敖和樹脂上之交換平衡動力學”,碩士論文,元智大學,中壢,(2002)。
【40】林麗君,“螯合離子交換與電解薄膜混合程序去除重金屬離子之最佳化",博士論文,元智大學化學工程與材料科學學系,中壢,(2007)。
【41】劉邦淵,“含氮官能基之螯合樹脂對銅離子吸附研究”,碩士論文,中原大學,中壢,(2000)。
【42】周劻輝,“以亞胺基二乙酸螯合樹脂吸附銦離子之研究",碩士論文,台北科技大學,台北,(2011)。
【43】D. R.Lide, CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, p 4:132, (2002).
【44】J. W.Morgan, and Anders, Edward, Proc. Natl. Acad. Sci. USA 77, 6973-6977 (1980).
【45】K.W.Whitten, R.E.Davis, , and M.L.Peck, General Chemistry 6th ed.; Saunders College Publishing: Orlando, FL,p 926-7,(2000).
【46】N.A.Campbell, J.B.Reece, Seventh Edition. San Francisco, California: Benjamin Cummings.: 65. ISBN 0-8053-7266-4,(2005).
【47】H.L.Bohn,B.L.Mcneal,G.A.O’connor,"Soil Chemistry.”John Wiley,New York.(1895).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊