(3.210.184.142) 您好!臺灣時間:2021/05/13 16:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:王姵雅
研究生(外文):Pei-Ya Wang
論文名稱:不同形態聚苯胺電洞傳輸層對固態染料敏化太陽能電池光伏特性影響之研究
論文名稱(外文):Studies on the Photovoltaic Properties of Various Morphologies of Polyaniline Used as a Hole Transport Layer in Solid-State Dye-Sensitized Solar Cell
指導教授:謝達華謝達華引用關係
指導教授(外文):Tar-Hwa Hsieh
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:101
畢業學年度:100
語文別:中文
論文頁數:112
中文關鍵詞:聚苯胺形態乳化聚合固態TiO2/Dye/PANI SCs電洞傳輸層光電轉換效率旋轉塗佈網版印刷
外文關鍵詞:Polyaniline morphologyemulsion polymerizationsolid-state TiO2/Dye/PANI solar cellshole transport layerSolar Energy Conversion Efficiencyspin coatingscreen printing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:762
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本論文是以苯胺為單體,過硫酸銨為起始劑,十二烷基苯磺酸(DBSA)為界面活性劑,利用乳化聚合反應合成不同形態之聚苯胺 (PANI),以作為染料敏化太陽能電池之電洞傳輸層(HTL),同時以旋轉塗佈(PC)或網印(SP)法製備之ITO/TiO2-PC 或ITO/TiO2-SP 為光陽極,藉由三明治構裝技術,製備固態TiO2/Dye/PANI 太陽能電池(solid-state TiO2/Dye/PANI SCs),並系統化探討不同形態PANI 、碘化鉀(KI)、4-tert-Butylpyridine(tBP) 添加物濃度與不同型式光陽極及其膜厚等對solid-state TiO2/Dye/PANI SCs 光伏特性的影響。 結果顯示,PANI 形態主要與DBSA 濃度有關。 當添加0.1 mol DBSA 時,合成之PANI 多呈擬塊狀形態(q-PANI);添加0.02 mole DBSA 時,PANI 多呈管狀形態;添加0.02 mol DBSA 與3 wt% 間-苯二胺時,PANI 為短棒狀形態。 由電流-電壓特性顯示,含9 wt% q-PANI ,TiO2-PC 光陽極緊密層/多孔層(DL/LL)為1/3 之solid-state TiO2-PC/Dye/q-PANI-9 SCs 具較佳的光伏特性,其開路電壓(Voc)為0.55 V ,短路電流(Jsc)為0.134 mA/cm2 ,光電轉換效率(η)為0.046 % 。 當HTL 加入1.1M KI 時,由於KI 能增加PANI 之導電度,使Jsc 增加,其Jsc 可由0.134 提升至2.94 mA/cm2 。 當HTL 同時添加1.1 M KI 與0.10 M tBP 時,由於tBP 能有效抑制TiO2 與PANI 間之電子-電洞再結合現象,可提升Voc 值,η 為0.937 % 。 Solid-state TiO2-SP/Dye/tBP-0.1 + KI-1.1 + q-PANI-9 SCs ,TiO2-SP 光陽極之DL/LL 為1/1 (4.58 m)時,η 為1.399 % ;當TiO2-SP 光電極之DL/LL 增至6/2 (17.09 m)時,得最佳的光伏性質,其η = 2.039 % 。
In the present study, solid-state titanium dioxide/Dye/polyaniline solar cells (TiO2/Dye/PANI SCs) were prepared by using sandwich assembling technique, in which PANI acted as a hole transport layer (HTL) of the dye sensitized solar cell. The PANI HTLs with different morphologies were further prepared by the emulsion polymerization, using aniline as a monomer, ammonium persulfate as the initiator and n-Dodecylbenzenesulfonic acid (DBSA) as the surfactant. Effect of different morphologies of PANI, different additives (i.e., KI and tBP) and different coating types (i.e., spin coating, PC and screen printing, SP) of TiO2 photoanode on the photovoltaic properties of the TiO2/ Dye/PANI SCs are also discussed. Results showed that the concentration of DBSA has a strong influence on the PANI morphologies. Different morphologies of PANI can be synthesized by adjusting the concentration of DBSA. Tube-like PANI (t-PANI), short rod-like PANI (sr-PANI) and short quasi lamp-like PANI (q-PANI) were prepared by the emulsion polymerization when 0.02 mole DBSA, 0.02 mol DBSA and 3 wt% p-Phenylendiamine and 0.1 mol DBSA were added, respectively. As for the solid-state TiO2-PC/Dye/q-PANI-9 SCs, where the ratio of density layer and light-scattering layer (DL/LL) of TIO2 photoanode is 3/1, the best performance open-circuit photo voltage (Voc) is 0.55V, short-circuit photocurrent density (Jsc) is 0.134 mA/cm2, the fill factor (FF) is 0.620, and the solar energy conversion efficiency (η) is 0.046%. As 1.1M KI is added, the solid-state TiO2-PC/Dye/q-PANI-9 SCs exhibits better photovoltaic properties, the value of Jsc is increased from 0.134 to 2.94 mA/cm2, which is attributed to I- ion doped PANI, Jsc is hence significantly increased. When both tBP (0.1 M) and KI (1.1M) are added into HTL, the Voc is enhenced to 0.52 V and η can reach to 0.937 %, which suggesting the tBP can effectively reduce the recombination of electron-hol pair. As for the solid-state TiO2-SP/Dye/ tBP-0.1 + KI-1.1 + q-PANI-9 SCs, the ratio of DL/LL of TIO2 photoanode is 1/1 (4.58 m), the η is 1.399 %. As the ratio of DL/LL of TIO2 photoanode is increased to 6/2, the Voc is 0.52 V, the Jsc is 6.39 mA/cm2, the FF is 0.620 (17.09 m), and a maxium η of 2.039 % is obtained.
摘要………………………………………………………………I
ABSTRACT.....................................II
誌謝………………………………………………………………IV
目錄………………………………………………………………V
表目錄 ……….…………………………………………………VIII
圖目錄……………………………………………………………X
第一章、緒論 1
1-1前言 1
1-2研究動機 3
第二章、文獻回顧 4
2-1 太陽能電池簡介 4
2-2 太陽能電池分類簡介 8
2-2-1 DSSCs工作原理 8
2-3多孔性nano-TiO2 薄膜特性 13
2-4 染料敏化劑………………………...………………………… 15
2-5 固態電解質 18
2-5-1 聚苯胺緣起簡介 20
2-5-2 聚苯胺之合成機構 23
2-5-3 聚苯胺之摻雜 26
2-6太陽能電池電流-電壓特性 30
第三章、實驗程序 36
3-1實驗材料與藥品 36
3-2 儀器設備 40
3-3 實驗步驟 44
3-3-1奈米TiO2 光陽極 44
3-3-1-1 旋轉塗佈法(Spin coating, PC)製備奈米TiO2 光陽極薄膜 44
3-3-1-2 網版印刷法(Screen printing, SP)製備奈米TiO2 光陽極薄膜 44
3-3-2不同形態之PANI之製備 45
3-3-2-1管狀(Tube like) PANI (t-PANI)之製備 45
3-3-2-2短棒狀(Short rod like) PANI (sr-PANI)之製備 45
3-3-2-3擬塊狀(Quasi lamp like) PANI(q-PANI)之製備 45
3-3-3 固態電解質之製備 46
3-3-3-1 PANI/PVP固態電解質之製備 46
3-3-3-2 KI + q-PANI/PVP固態電解質之製備 46
3-3-3-3 tBP + KI + q-PANI/PVP固態電解質之製備 46
3-3-4 對電極之製備 47
3-3-5 DSSCs 之製備 47
3-4 性質測定 48
第四章、結果與討論 50
4-1 Sc 法製備之奈米TiO2光陽極分析 50
4-2 不同形態PANI 結構分析及鑑定 53
4-3太陽能電池構裝效率檢測 60
4-3-1 Solid-state TiO2-PC/Dye/t-PANI SCs 60
4-3-2 Solid-state TiO2-PC/Dye/sr-PANI SCs 65
4-3-3 Solid-state TiO2-PC/Dye/q-PANI SCs 70
4-3-4 Solid-state TiO2-PC/Dye/PANI-9 SCs 75
4-3-4 q-PANI中添加物對電池J-V 特性之影響 78
4-3-4-1添加KI 對電池光伏特性影響 78
4-3-4-2添加tBP 對電池光伏特性影響 84
4-4 Solid-state TiO2-SP/Dye/tBP-0.1 + KI-1.1 + q-PANI-9 SCs 90
4-4-1 SP 法製備之奈米TiO2 光陽極分析 90
4-4-2太陽能電池構裝效率檢測-相同膜厚組成 96
4-4-3太陽能電池構裝效率檢測-不同膜厚組成 99
第五章、結論 104
第六章、參考文獻 106
1.B. Li, L. Wang, B. Kang, P. Wang, Y. Qiu, Sol. Energy Mater. Sol. Cells, 90, 2006, 549.
2.B.O’Regan, M. Grätzel, Nature, 353, 1991, 737.
3.P.M. Sirimanne, T. Jeranko, P. Bogdanoff, S. Fiechter, H. Tributsch, Semicond. Sci. Technol., 18, 2003, 708.
4.S. Tan, J. Zhai, B. Xue, M. Wan, Q. Meng, Y. Li, L. Jiang, D. Zhu, Langmuir, 20, 2004, 2934.
5.S. Tan, J. Zhai, M. Wan, Q. Meng, Y. Li, L. Jiang, D. Zhu, J. Phys. Chem. B, 108, 2004, 18693.
6.J. Wu, P. Li, S. Hao, H. Yang, Z. Lan, Electrochimica Acta, 52, 2007, 5334.
7.汪鐵志, < 207太陽光電產業瞭望與剖析>, 財團法人光電科技工業協進會, (2007) 2-2.
8.汪鐵志, < 207太陽光電產業瞭望與剖析> , 財團法人光電科技工業協進會, (2007) 2-6.
9.A.F. Nogueira, C. Longo, M.-A. De Paoli, Coordination Chemistry Review, 248, 2004, 1455
10.M. Grätzel, Nature, 414, 2001, 338.
11.K. Kalyanasundaram, M. Grätzel, Coord. Chem. Rev., 177, 1998, 347.
12.M. Grätzel, Current Opinion in Colloid and Interface Science, 4, 1999, 314.
13.A. Fujishima et al., Sol. Energy Mater. Sol. Cells, 81, 2004, 197.
14.N. Shogo, K. Taisuke, K. Wataru, K. Kitamura, W. Yuji, Y. Shozo, J. Phys. Chem. B, 109, 2005, 3480.
15.B. O’Regan, M. Grätzel, Nature, 353, 1991, 737.
16.H. J. Snaith, L. Schmidt-Mende, Adv. Mater., 19, 2007, 3187.
17.K.M. Reddy, S. V. Manorama, A.R. Reddy, Mater. Chem. and Phy., 78, 2002, 239.
18.K. Negaveni, M.S. Hegde, N. Ravishankar, G.N Subbanna, G. Madras, Langmuir, 20, 2004, 2900.
19.A.Vittadini, A. Selloni, F.P. Rotzinger, M.Grätzel, Phy. Rev.Lett, 81, 1988, 2954.
20.V. Thavasi, V. Renugopalakrishnan, R.Jose, S. Ramakrishna, Materials Science and Engineering R, 63, 2009, 81.
21.J. k. Lee, B. H. Jeong, S. I. Jang, Y. S. Yeo, S. H. Park, J. U. Kim, Y. G. Kim, Y. W. Janh, J. Mater Sic: Mater Electron, 20, 2009, 446.
22.劉茂煌, <奈米光電池> , 工業材料雜誌, 203, 2003, 93.
23.K. S. Finnie, J. R. Bartlett, J. L. Woolfrey, Langmuir, 14, 1998, 2744.
24.C. Pérez León, L. Kador, B. Peng, M. Thelakkat, J. Phys. Chem. B, 110, 2006, 8723.
25.C. Bauer, G. Boschloo, E. Mukhtar, A. Hagfeldt, J. Phys. Chem. B, 106, 2002, 12693.
26.B. Li, L. Wang, B. Kang, P. Wang, Y. Qiu, Sol. Energy Mater. Sol. Cells., 90, 2006, 549.
27.H. Letheby, J. Chem. Soc., 15, 1862, 161.
28.A. G. Green, A. E. Woodhead, J. Chem. Soc. Trans., 97, 1910, 2388.
29.A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasir, W. Wu, S. I. Yaniger, Mol. Cryst. Liq. Cryst., 121, 1985, 173.
30.D. M. Mohilner, R. N. Adams, W. Argersinger, J. Am. Chem. Soc., 84, 1962, 3618.
31.W. W. Focke, G. E. Wnek, Y. J. Wei, Phys. Chem., 91, 1987, 5813.
32.Y. Cao, P. Smith, and A. J. Hegger, Synthetic Metals, 55, 1993, 3514.
33.D. M. Mohilner, R. N. Adams, W. Argersinger, J. Am. Chem. Soc., 84, 1962, 3618.
34.E. M. Genies, A. A. Syed, C. Jsintavis, Mol. Cryst. Liq. Cryst.,121, 1985, 181.
35.E. M. Genies, and C. Tsintaris, J. Electroanal. Chem., 195, 1985, 109.
36.G. Klarner, Synthetic Metals, 84, 1997, 297.
37.C. D. Pina, E. Falletta, M. Rossi , Catalysis Today, 160, 2011,11.
38.N. V. Bhat, D. T. Seshadri, Synthetic Metals, 130, 2002, 185.
39.W. Yin, R. Eli, Synthetic Metals, 108, 2000, 39.
40.C. W. Lee, Kim, B. Young, and S. H. Lee, Chemistry of Materials, 17, 2005, 366.
41.V. A. Adrian, J. A. Sordo, G. E. Scuseria, Journal of the American Chemical Society, 127, 2005, 11318.
42.L. M. Huang, C. H. Chen, T. C. Wen, A. Gopalan, Electrochimica Acta, 51, 2006, 2756.
43.M. Ghosh, A. K. Meikap, S. K. Ghattopadhyay, S. Chatterjee, Journal of Physics and Chemistry of Solids, 62, 2001, 475.
44.A. J. Heeger, Synthetic Metals, 125, 2002, 23.
45.V. N. Prigodin, and A. J. Epstein, Synthetic Metals, 125, 2002, 43.
46.黃郁嵐,高雄應用科技大學,碩士論文 , 2006.
47.J. K. Lee, B. H. Jeong, S. I. Jang, Y. S. Yeo, S. H. Park, J. U. Kim, Y. G. Kim, Y. W. Jang, M. R. Kim, J. Mater Sic: Mater Electron, 20, 2009, 446.
48.M. C. Kao, H. Z. Chen, S. L. Young, C. Y. Kung, C. C. Lin, The Solid Films, 517, 2009, 5096.
49.W. J. Lee, D. Y. Lee, J. S. Song, B. K. Min, Metals and Materials International, 11, 2005, 465.
50.J. K. Lee, N. C. D. Nath, E. H. Cha, S. Sarker, H. S. Park, W. S. Jeong, S. H. Hong, J. J. Lee, Bull. Korean Chem. Soc, 31, 2010, 3411.
51.W. M. Tai, G. Li, L. L. Yun, C. Chong, K. M. Guang, W. K. Jia, Acta Physica Sinica, 56, 2007, 4270.
52.S. Yanagida, N. Fukuri, N. Masaki, T. Kitamura, Y. Wada, J. Phys. Chem. B, 110, 2006, 25251.
53.H. S. Shin, S. Ameen, M. S. Akhtar, G. S. Kim, Y. S. Kim, O. B. Yang, Journal of Alloys and Compounds, 487, 2009, 382.
54.崔孟晉,染敏太陽能電池電解質材料近況發展,工業材料雜誌,257,2008,184.
55.S. Yanagida, K. Murakoshi, R. Kogure, Y. Wada, Solar Energy Materials and Solar Cells, 55, 1998, 113.
56.S. Yanagida, Y. Saito, N. Fukuri, R. Senadeera, T. Kitamura, Y. Wada, Electrochemistry Communications, 6, 2004, 71.
57.M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E.Muller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc., 115, 1993, 6382.
58.H. S. Shin, S. Ameen, M. S. Akhtar, Y. S. Kim, O. B. Yang, J. Phys. Chem. C, 114, 2010, 4760.
59.Z. Lan, J. Wu, J. Lin, M. Huang, J. Sol-Gel Sci. Technol., 53, 2010, 599.
60.馬振基,<奈米材料科技原理與應用>,全華科技圖書股份有限公司,2-25 – 2-26,2003.
61.M. E. Jozefowicz,Physical Review B ,1989.
62.沈聖彥,國立高雄應用科技大學,碩士論文,2011.
63.王淑君,南台科技大學,碩士論文,2006.
64.W. Yin, and E. Ruckenstein, Synthetic Metals, 108, 2000, 39.
65.P. G. Wiles, J. Abrahamsion, Carbon., 16, 1978, 341.
66.O. Groning, O. M. Kuttel, C. h. Emmenegger, P. Groning, L.Schlapbach, Journal of Vacuum Science & Technology B, 18, 2000, 665.
67.王宗雄,導電高分子聚苯胺之簡介及其應用,工業材料雜誌,175,2001,173.
68.彭懷夫,國立東華大學,碩士論文,2004.
69.P. Y. Chen, C. P. Lee, R. Vittal, K. C. Ho, Journal of Power Sources, 195, 2010, 3933.
70.Y. Lee, J. Chae, M. Kang, Journal of Industrial and Engineering Chemistry, 16, 2010, 609.
71.L. Meng, T. Ren, C. Li, Applied Surface Science, 256, 2010, 3676.
72.B. Yoo, K. J. Kim, S. Y. Bang, M. J. Ko, K. Kim, N. G. Park , Journal of Electroanalytical Chemistry, 638, 2010, 161.
73.H. Yu, S. Zhang, H. Zhao, Electrochimica Acta, 54, 2009, 1319.
74.J. Ferber, .J. Luther, Journal of Physical Chemistry B, 105, 2001, 4895.
75.C. F. Bohren, D. R. Huffman, Wiley-Interscience, 1983, 541.
76.S. H. Kang, J. Y. Kim, H. S. Kim, H. D. Koh, J. S. Lee, Y. E. Sung, Journal of Photochemistry and Photobiology A: Chemistry, 200, 2008, 294.
77.J. K. Lee, B. H. Jeong, S. I, Jang, Y. G. Kim, Y. W. Jang, S. B. Lee, M. R. Kim, Journal of Industrial and Engineering Chemistry,15, 2009, 724.
78.S.Hore, C. Vetter, R. Kern, H. Smit, A. Hinsch, Solar Energy Materials and Solar Cells, 90, 2006, 1176.
79.T. Svensson, Z. Shen, Applied Physics Letters, 96, 2010, 021107.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔