(3.238.96.184) 您好!臺灣時間:2021/05/15 07:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:杜俞穎
研究生(外文):Yu-Ying Tu
論文名稱:自身摻雜聚苯胺/幾丁聚醣-奈米碳管的電化學性質及用於感測元件之研究
論文名稱(外文):A Study on Electrochemical Properties of Self-Doped Polyaniline/chitosan-carbon nanotube Composite Films and Their Uses as Sensing Materials
指導教授:林榮顯謝永堂謝永堂引用關係
指導教授(外文):Rong-Hsien LinYeong-Tarng Shieh
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:93
中文關鍵詞:自身摻雜聚苯胺奈米碳管幾丁聚醣電催化性質感測
外文關鍵詞:Self-doped PolyanilineCarbon nanotubeChitosanElectrocatalytic propertySensing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:758
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本研究是將奈米碳管(carbon nanotube, CNT)、幾丁聚醣(chitosan, CS)與自身摻雜聚苯胺(self-doped polyaniline, SPAN)利用滴注的方式在玻璃碳電極(glassy carbon electrode, GCE)表面形成層狀結構之複合膜,藉由循環伏安法(cyclic voltammetry, CV),於pH 2, 7, 及11 的緩衝溶液中,觀察其電化學性質。研究後發現,三種pH值中,以SPAN/CS-CNT/GCE之修飾電極的電流訊號最高,是因為SPAN與奈米碳管之間產生協同效應(Synergy effects)。另外、在pH 7時,具有較廣的電位視窗範圍(0.2~0.8 V),有利於多巴胺與尿酸 雙成分之分析。由循環伏安法,發現SPAN/CS-fCNT/GCE修飾電極在pH 7緩衝溶液中可以分開多巴胺(DA)與尿酸(UA)的氧化電位,分別為0.2 V和0.35 V。另外,本研究也改變成膜的順序,形成各種複合膜,進行對雙成份(DA與UA)之感測分析,發現三者相混(CS-fCNT-SPAN/GCE)的修飾電極之感測電流訊號強度比以層狀方式成膜(SPAN/CS-fCNT/GCE、CS-fCNT/SPAN/GCE)的修飾電極較強。
Layered composites of self-doped polyaniline (SPAN), chitosan (CS), and carbon nanotubes (CNT) were cast on glassy carbon electrodes (GCE) for investigations on their electrochemical properties in buffer solutions of three different pH (pH 2, 7, and 11) using the method of cyclic voltammetry (CV). CV curves revealed that the SPAN/CS-CNT/GCE exhibited the highest anodic peak current in buffer solutions of all three pH, an indication that SPAN and CNT have synergy effects. In addition, in solution of pH 7, the SPAN/CS-CNT/GCE could provide a broad potential window (0.2~0.8 V) useful for simultaneous detection of dopamine (DA) and uric acid (UA). The SPAN/CS-fCNT/GCE in the solution of pH 7 could clearly exhibit anodic peaks at 0.2 V and 0.3 V for DA and UA, respectively, an indication that this modified electrode could simultaneous detect DA and UA. For comparison with the layered SPAN/CS-fCNT/GCE, the CS-fCNT-SPAN/GCE without a layered structure, which was obtained by modifying the GCE with a mixture of SPAN, CS, and CNT, exhibited stronger anodic peak currents for DA and UA at 0.2 V and 0.35 V, respectively.
總目錄 II
圖目錄 IV
第一章 前言 1
1-1. 感測器 2
1-1-1. 感測器定義 3
1-1-2. 感測器種類 6
1-1-2a. 電化學式生物感測器 6
1-1-2b. 光學式生物感測器 8
1-1-2c. 質量式生物感測器 8
1-1-3. 修飾電極方法 8
1-2. 聚苯胺 10
1-2-1. 聚苯胺的合成方法 10
1-2-2. 聚苯胺之聚合機制 12
1-2-3. 聚苯胺摻雜機制 13
1-3. 自身摻雜聚苯胺 15
1-3-1. 自身摻雜聚苯胺的自身摻雜機構 16
1-3-2. 磺酸化聚苯胺的氧化還原行為 18
1-3-3. 各種自身摻雜聚苯胺 19
1-4. 奈米碳管 20
1-4-1. 奈米碳管製備方法 20
1-4-2. 奈米碳管的特性 23
1-4-3. 奈米碳管的分散方法 23
1-4-3a. 共價鍵修飾 23
1-4-3b. 非共價鍵的修飾 24
1-5. 幾丁聚醣 25
1-5-1. 幾丁聚醣的結構 25
1-5-2. 幾丁聚醣的性質 25

第二章 文獻回顧 27
2-1. 奈米碳管應用於感測器 27
2-2. 聚苯胺與幾丁聚醣應用於感測器 29
2-3. 磺酸化聚苯胺應用於感測器 30
2-4. 研究動機與目的 31

第三章 材料設備及研究方法 32
3-1. 實驗材料 32
3-2. 實驗使用之儀器及操作條件 35
3-3. 實驗步驟及方法 36
3-3-1. 奈米碳管(CNT)之製備 37
3-3-2. 官能基化多層奈米碳管(fCNT)之製備 38
3-3-3. 聚苯胺(PANI)之製備 39
3-3-4. 自身摻雜聚苯胺(SPAN)之製備 40
3-3-5. SPAN溶液與CS-(f)CNT溶液與之製備 40
3-3-6. SPAN/CS-(f)CNT修飾電極之製備 41
3-3-7. SPAN/CS-CNT膜和SPAN/CS-fCNT膜之製備 42
3-3-8. 緩衝溶液配製 42
3-3-9. 待測溶液配製 43

第四章 結果與討論 44
4-1. 幾丁聚醣、奈米碳管在水溶液之分散性 44
4-1-1. CS-(f)CNT複合膜之電化學性質 44
4-1-2. CS-(f)CNT複合膜之表面形態 45
4-2. 聚苯胺之化學氧化聚合反應 45
4-2-1. IR之鑑定分析 45
4-2-2. UV之鑑定分析 46
4-2-3. SPAN/CS-(f)CNT複合膜之電化學分析 46
4-2-4. SPAN/CS-(f)CNT複合膜之表面形態 47
4-2-5. 偵測液pH值對SPAN/CS-(f)CNT複合膜之電化學性質之影響 47
4-3. SPAN/CS-(f)CNT複合膜對AA、DA及UA之分析 49
4-3-1. AA之分析 49
4-3-2. DA之分析 50
4-3-3. UA之分析 50
4-4. 掃描速率對CV圖之影響 51
4-4-1. DA之分析 51
4-4-2. UA之分析 52
4-5. SPAN/CS-fCNT複合膜對混合成份(DA和UA)之分析 52
4-6. 成膜順序對SPAN, CS, (f)CNT複合膜之分析 53
4-6-1. CS-CNT/SPAN和CS-fCNT/SPAN複合膜之FE-SEM圖 53
4-6-2. CS-CNT-SPAN和CS-fCNT-SPAN複合膜之FE-SEM圖 53
4-6-3. 成膜順序對SPAN, CS, (f)CNT複合膜之電化學性質 54
4-6-4. DA及UA對SPAN, CS, (f)CNT複合膜之分析 55
4-6-4-1. DA之分析 55
4-6-4-2. UA之分析 55
4-6-5. SPAN, CS, (f)CNT複合膜對混合成分(DA和UA)之分析 56
4-6-6. DA及UA之計時安培法之分析 56

第五章 結論 57

第六章 參考文獻 58

自 傳 簡 歷 92

表目錄
表1. 生物感測器之生物元件及各種換能器 4
表2. 信號換能器之優缺點 6
表3. 奈米碳管量產所使用之成長技術及其特性重點整理 22

流程目錄
Scheme 1. 總實驗流程圖。 36
Scheme 2. 製備奈米碳管之流程圖。 37
Scheme 3. 奈米碳管酸化之流程圖。 38
Scheme 4. 製備PANI之流程圖。 39
Scheme 5. 製備SPAN之流程圖。 40
Scheme 6. 製備SPAN/CS-CNT/GCE及SPAN/CS-fCNT/GCE等修飾電極之流程圖。 41
Scheme 7. 製備SPAN/CS-CNT膜及SPAN/CS-fCNT膜之流程圖。 42

圖目錄
圖1. 感測器的基本架構。 3
圖2. 化學感測器之原理示意圖。 4
圖3. 生物感測器裝置。 5
圖4. 電化學式生物感測器(A)電位式(B)電流式生物感測器簡圖。 7
圖5. 不同氧化還原狀態的聚苯胺。 11
圖6. 聚苯胺的聚合機制及其衍生行為。 13
圖7. 聚苯胺與質子酸進行摻雜反應的可能機制。 14
圖8. 自身摻雜導電高分子概念圖。 15
圖9. 發煙硫酸與聚苯胺進行磺酸化反應合成自身摻雜聚苯胺。 16
圖10. 磺酸化聚苯胺發生氧化反應。 17
圖11. A磺酸根與陽離子自由基的氮原子形成五圓或六圓環的構形。B陽離子自由基的氮原子與相鄰高分子鏈上的磺酸根形成交互作用。 17
圖12. 自身摻雜聚苯胺的氧化還原行為。 18
圖13. 各種類型之自身摻雜聚苯胺。 19
圖14 (A)多壁奈米碳管(multi-walledcarbonnanotube, MWCNT) (B)單壁奈米碳管(single-walledcarbonnanotube, SWCNT) 20
圖15. 化學氣相沉積法裝置示意圖。 21
圖16. 各種奈米碳管修飾方法示意圖。 24
圖17. 幾丁質、幾丁聚醣及纖維素結構式。 26
圖18. (a) GCE, (b) CS-CNT/GCE, (c) CS-fCNT/GCE在(A) pH 2 (B) pH 7 (C) pH 11之2 mM赤血鹽溶液(含0.1 M KCl)之CV圖。掃描速率為50 mV/s。 66
圖19. CS-CNT 1-1(醋酸)複合膜之FE-SEM圖。(A) 1k, (B) 20k, (C) 60k。 67
圖20. CS-fCNT 1-1(醋酸)複合膜之FE-SEM圖。(A) 1k, (B) 20k, (C) 60k。 68
圖22. (A) PANI-EB, (B) PANI-ES, (C) SPAN之FT-IR圖 70
圖23. PANI-EB, PANI-ES, SPAN之UV-vis圖 71
圖24. (A) (a) GCE, (b) SPAN/CS/GCE, (c) SPAN/CS-CNT/GCE, (B) (a) GCE, 72
(b) SPAN/CS/GCE, SPAN/CS-fCNT/GCE在pH 7之2 mM赤血鹽溶液(含0.1 M KCl)之CV圖。掃描速率為50 mV/s。 72
圖25. SPAN/CS-CNT 5/1-1 (醋酸)複合膜之FE-SEM圖。(A) 20k, (B) 60k。 73
圖26. SPAN/CS-fCNT 5/1-1(醋酸)複合膜之FE-SEM圖。(A) 20k, (B) 60k。 74
圖27. (a) GCE, (b) CS-CNT/GCE, (c) SPAN/CS/GCE, (d) SPAN/CS-CNT/GCE在(A) pH 2 (B) pH 7 (C) pH 11緩衝溶液(含0.1 M KCl)之CV圖。掃描速率為50 mV/s。 75
圖28. (a) GCE, (b) CS-fCNT/GCE, (c) SPAN/CS/GCE (d) SPAN/CS-fCNT/GCE在(A) pH 2 (B) pH 7 (C) pH 11緩衝溶液(含0.1 M KCl)之CV圖。掃描速率為50 mV/s。 76
圖29. (a) GCE, (b) CS-CNT/GCE, (c) SPAN/CS/GCE, (d) SPAN/CS-CNT/GCE在(A) pH 2 (B) pH 7 (C) pH 11之2 mM赤血鹽溶液(含0.1 M KCl)之CV圖。掃描速率為50 mV/s。 77
圖30. (a) GCE, (b) CS-fCNT/GCE, (c) SPAN/CS/GCE, (d) SPAN/CS-fCNT/GCE在(A) pH 2 (B) pH 7 (C) pH 11之2 mM赤血鹽溶液(含0.1 M KCl)之CV圖。掃描速率為50 mV/s。 78
圖31. (a)GCE, (b) CS-CNT/GCE, (c) SPAN/CS/GCE, (d) SPAN/CS-CNT/GCE的修飾電極偵測(A) 抗壞血酸(4 mM) (B) 多巴胺(0.4 mM) (C) 尿酸(0.8 mM)之CV圖。抗壞血酸、多巴胺、尿酸均溶於pH 7緩衝溶液(含0.1 M KCl)中。掃描速率為50 mV/s。 79
圖32. (a) GCE, (b ) CS-fCNT/GCE, (c) SPAN/CS/GCE, (d) SPAN/CS-fCNT/GCE的修飾電極偵測(A) 抗壞血酸(4 mM) (B) 多巴胺(0.4 mM) (C) 尿酸(0.8 mM)之CV圖。抗壞血酸、多巴胺、尿酸均溶於pH 7緩衝溶液(含0.1 M KCl)中。掃描速率為50 mV/s。 80
圖33. (A) SPAN/CS-fCNT/GCE的修飾電極在0.4 mM多巴胺中改變掃描速率之CV圖。(B) 氧化及還原峰電流密度(Ipa & Ipc)對掃描速率作圖。多巴胺溶在pH 7之緩衝溶液(含0.1 M KCl)中。掃描速率為25、50、75、100、125 mV/s。 81
圖34. (A) SPAN/CS-CNT/GCE的修飾電極在0.8 mM尿酸中改變掃描速率之CV圖。(B)氧化峰電流密度(Ipa)對掃描速率之二分之一次方作圖。尿酸溶在pH 7之緩衝溶液(含0.1 M KCl)中。掃描速率為25、50、75、100、125 mV/s。 82
圖35. (A) SPAN/CS-fCNT/GCE的修飾電極在0.8 mM尿酸中改變掃描速率之CV圖。(B) 氧化峰電流密度(Ipa)對掃描速率之二分之一次方作圖。尿酸溶在pH 7之緩衝溶液(含0.1 M KCl)中。掃描速率為25、50、75、100、125 mV/s。 83
圖36. SPAN/CS-fCNT/GCE的修飾電極偵測混合成份(多巴胺+尿酸)之CV圖。多巴胺(0.4 mM)和尿酸(0.8 mM)均溶於pH 7緩衝溶液(含有0.1 M KCl)中。掃描速率為50 mV/s。 84
圖37. (A) SPAN/CS-fCNT/GCE的修飾電極在混合成份(多巴胺+尿酸)中改變掃描速率之CV圖。(B)氧化峰電流密度(Ipa)對掃描速率作圖。多巴胺和尿酸均溶在pH 7之緩衝溶液(含0.1 M KCl)中。掃描速率為25、50、75、100、125 mV/s。 84
圖38. CS-CNT/SPAN 1-1/5 (醋酸)複合膜之FE-SEM圖。(A) 20k, (B) 60k。 85
圖39. CS-fCNT/SPAN 1-1/5 (醋酸)複合膜之FE-SEM圖。(A) 20k, (B) 60k。 86
圖40. CS-CNT-SPAN 1-1-5 (醋酸)複合膜之FE-SEM圖。(A) 20k, (B) 60k, (C) 100K。 87
圖41. CS-fCNT-SPAN 1-1-5 (醋酸)複合膜之FE-SEM圖。(A) 20k, (B) 60k, (C) 100K。 88
圖42. (A) (a) GCE, (b) SPAN/CS-CNT/GCE, (c) CS-CNT/SPAN/GCE, (d) CS-CNT-SPAN/GCE, (B) (a) GCE, (b) SPAN/CS-CNT/GCE, (c) CS-CNT/SPAN/GCE, (d) CS-CNT-SPAN/GCE等修飾電極在pH 7緩衝溶液(含0.1 M KCl)之CV圖。掃描速率為50 mV/s。 89
圖43. (A) (a) GCE, (b) SPAN/CS-CNT/GCE, (c) CS-CNT/SPAN/GCE, (d) CS-CNT-SPAN/GCE, (B) (a) GCE, (b) SPAN/CS-CNT/GCE, (c) CS-CNT/SPAN/GCE, (d) CS-CNT-SPAN/GCE等修飾電極在pH 7之2 mM赤血鹽溶液 (含0.1 M KCl)之CV圖。掃描速率為50 mV/s。 89
圖44. (a) SPAN/CS-CNT/GCE, (b) CS-CNT/SPAN/GCE, (c) CS-CNT-SPAN/GCE之修飾電極來偵測(A) 多巴胺(0.4 mM), (B) 尿酸(0.8 mM)之CV圖。多巴胺、尿酸均溶於pH 7緩衝溶液(含0.1 M KCl)中。掃描速率為50 mV/s。Inset︰裸GCE之CV圖。 90
圖45. (a) SPAN/CS-fCNT/GCE, (b) CS-fCNT/SPAN/GCE, (c) CS-fCNT-SPAN/GCE之修飾電極來偵測(A) 多巴胺(0.4 mM), (B) 尿酸(0.8 mM)之CV圖。多巴胺、尿酸均溶於pH 7緩衝溶液(含0.1 M KCl)中。掃描速率為50 mV/s。Inset︰裸GCE之CV圖。 90
圖46. (a) SPAN/CS-fCNT/GCE, (b) CS-fCNT/SPAN/GCE, (c) CS-fCNT-SPAN/GCE之修飾電極偵測混合成份(多巴胺+尿酸)之CV圖。多巴胺(0.4 mM)和尿酸(0.8 mM)均溶在pH 7緩衝溶液(含有0.1 M KCl)中。掃描速率為50 mV/s。Inset︰裸GCE之CV圖。 91
圖47. (A) CS-fCNT-SPAN/GCE的修飾電極作定電位(+0.2 V)偵測每50秒加入 2 mM多巴胺於不同體積(1, 2, 2, 5, 5, 10, 10, 20, 20, 40, 40μL)之安培圖。(B)多巴胺氧化電流密度 vs. 濃度作圖。多巴胺溶於pH 7緩衝溶液(含0.1 M KCl)。 92
圖48. (A) CS-fCNT-SPAN/GCE的修飾電極作定電位(+0.35 V)偵測每50秒加入 2 mM尿酸於不同體積(1, 2, 2, 5, 5, 10, 10, 20, 20, 40, 40, 60μL)之安培圖。(B)尿酸氧化電流密度 vs. 濃度作圖。尿酸溶於pH 7緩衝溶液(含0.1 M KCl)。 93
【1】R. M. Wightman, L. J. May, A. C. Michael, “Detection of dopamine dynamics in the brain”, Analytical Chemistry, 60, 769A(1988)
【2】A. Liu, I. Honma, H. S. Zhou, “Amperometric biosensor based on tyrosinase-conjugated polysaccharide hybrid film: Selective determination of nanomolar neurotransmitters metabolite of 3,4-dihydroxyphenylacetic acid (DOPAC) in biological fluid”, Biosensors and Bioelectronics, 21, 809(2005)
【3】A. P. Hall, P. E. Barry, T. R. Dawber, P. M. McNamara, “Epidemiology of gout and hyperuricemia: A long-term population study”, American Journal of Medicine, 42, 27(1967)
【4】B. Ullman, M. A. Wormsted, M. B. Cohen, D. W. Martin Jr., “Purine oversecretion in cultured murine lymphoma cells deficientin adenylosuccinate synthetase: Genetic model for inherited hyperuricemia and gout”, Proc Natl Acad Sci U.S.A, 79, 5127(1982)
【5】J. M. Zen, J. J. Jou, G. Ilangovan, “Selective voltammetric method for uric acid detection using pre-anodized Nafion-coated glassy carbon electrodes”, Analyst, 123, 1345(1998)
【6】A. J. Cunningham, “Introduction to Bioanalytical Sensors”, John Wiley & Sons Ltd. N.Y., 1st, 10(1998)
【7】C. Ziegler and W. Gpelt, “Biosensor development”, Current Opinion in Chemical Biology, 2, 585(1998)
【8】A. J. Cunningham, “Introduction to Bioanalytical Sensors”, John Wiley & Sons Ltd., N.Y., 2nd, 10(1998)
【9】M. P. Byfield, R. A. Abuknesha, “Biochemical aspects of biosensors”. Biosensors and Bioelectronic, 9, 373(1994)
【10】W. H. Scouten, J. H. T. Luong, R. S. Brown, “Enzyme or protein immobilization techniques for applications in biosensor design”, Tibtech, 13, 178(1995)
【11】R. S. Sethi, “Transducer aspects of biosensors”, Biosensors and Bioelectronic, 9, 243(1994)
【12】許峰碩, “奈米碳黑在免疫層析檢測上的應用”, 國立中興大學化學工程研究所碩士論文, (2002)
【13】U. E. Spichiger-Keller, “Chemical sensors and biosens for medical and biological applications”, Wiley-VCH, (1998).
【14】F. Scheller, F. Schubert, “Biosens”, Elsevier Science Ltd.,
N.Y., 1st, 89(1992).
【15】M. A. Glimartion, J. P. Hart, “Sensing with chemically and biologically modified carbon electrodes: A review”, Analyst, 120, 1029(1955).
【16】C. Calderson, R. L. Chapple, “Arsenic exposure and health effects”, Elsevier Science Ltd., London, (1999).
【17】C. M. Barra, M. M. C. Santoes, “Speciation of inorganic arsenic in natural waters by square-wave cathodic stripping voltammetry”, Electroanal, 13, 1098(2001)
【18】E. Majid, S. Hrapovic, Y. Liu, K. Male, J. H. T. Luong, “Electrochemical determination of arsenite using a gold nanoparticle modified glassy carbon electrode and flow Analysis”, Analyte Chemistry, 78, 762(2006)
【19】P. J. Nigrey, A. G. MacDiarmid, A. J. Heeger, “Electrochemistry of Polyacetylene,(CH)x:electrochemical doping of (CH)x films to the metallic state”, Journal of Chemical Society, 594(1979)
【20】H. Letheby, “XXIX.-ON the production of a blue substance by the electrolysis of sulphate of aniline”, Journal of Chemical Society, 15, 161(1862)
【21】W. S. Huang, B. D. Humphrey, A. G. Macdiarmid, “Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes”, Journal of Chemical Society, 82, 2385(1986)
【22】D. M. Mohilner, R. N. Adams, W. J. Argersinger, “Investigation of the kinetics and mechanism of the anodic oxidation of aniline in aqueous sulfuric acid solution at a platinum electrode”, Journal of Chemical Society, 84, 3618(1962)
【23】A. Watanabe, K. Mori, Y. Iwasaki,Y. Nakamura, S. Niizuma, “Electrochromism of polyaniline film prepared by electrochemical polymerization”, Macromolecules, 20, 1793(1987)
【24】A. G. Macdiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, L. D. Nanaxakkara, S. W. Wu, S. I. Yaniger, “Polyaniline︰interconversion of metallic and insulating forms”, Molecular Crystals and Liquid Crystals, 121, 173(1985)
【25】A. G. Macdiarmid, A. J. Epsyein, “Polyanilines:a novel class of conducting polymers”, Faraday discussions, 88, 317(1987)
【26】W. W. Focke, G. E. Wnek, Y. Wei, “Influence of oxidation state, pH, and counterion on the conductivity of polyaniline”, Journal of Physical Chemistry, 91, 5813(1987)
【27】A. G. Macdiarmid, J. C. Chiang, A. F. Richter, N. L. D. Somasiri, A. J. Epstein, “Polyaniline:synthesis and characterization of the emeraline oxidation state by elemental analysis”
【28】J. P. Travers, J. Chroboczek, F. Devreux, F. Genoud, M. Nechtschein, “Transpork and Magnetic responance studies of polyaniline”, Molecular Crystals and Liquid Crystals, 121, 195(1985)
【29】P. N. Adams, A. P. Monkman, “Characterization of high molecular weight polyaniline synthesized at -40oC using a 0.25:1 mole ratio of persulfate oxidant to aniline”, Synthetic Metals, 87, 165(1997)
【30】Y. Wei, R. Hariharan, S. A. Patel, “Chemical and electrochemical copolymerization of aniline with alkyl ring-substituted aniline”, Macromolecules, 23, 758(1990)
【31】R. A. Cox, E. Buncel, “In the chemistry of Hydrazo, Azo and Azoxy groups”, S. Patel Ed., Wiley, New York, part 12, 775(1975)

【32】M. Breitenbach, K. H. Heckner, “Untersuchungen Zur kinetic der anodischen oxydation von anilin in azetonitril an der rotierenden platinelektrode”, Journal of Electroanalytical Chemistry, 29, 309(1971)
【33】J. C. Chiang, A. G. MacDiarmid, “Polyaniline:Protonic acid doping of the emeraldine form to the metallic regime”, Synthetic Metal, 13, 193(1986)
【34】W. R. Salaneck, I. Lundstrom, W. S. Huang, A. G. Mardiarmid, “A two-Dimensional-surface ‘State diagramfor’ polyaniline”, Synthetic Metals, 13, 291(1986)
【35】A. G. Macdiarmid, “Synthetic metals:A novel role for organic polymers (Nobel lecture)”, Angewandte Chemie-International Edition, 40, 2581(2001)
【36】A. O. Patil, Y. Ikenoue, Fred wudl, A. J. Heeger, “Water Soluble Conducting polymers”, Journal of the American Chemistry Society, 109, 1858(1987)
【37】J. Yue, A. J. Epstein, “Synthesis of self-doped conducting polyaniline”, Journal of the American Chemistry Society, 112, 2800(1990)
【38】J. Yue, Z. H. Wang, K. R. Cromack, A. J. Epstein, A. G. Macdiarmid, “Effect of sulfonic acid group on polyaniline backbone”, Journal of the American Chemistry Society, 113, 2665(1991)
【39】J. Yue. G. Gordon, A. J. Epstein , “Comparison of different synthetic routes for sulfonation of polyaniline”, Polymer, 33, 4410(1992)
【40】X. L. Wei, Y. Z. Wang, S. M. Long, C. Bobeczko, A. J. Epstein, “Synthesis and physical properties of highly sulfonazted polyanilne”, Journal of the American Chemistry Society, 118, 2545(1996)
【41】S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, (1991) 56.
【42】S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 363, 603(1993)
【43】M. Urchulutegui, J. Piqueras, “Signal Generation Mechanisms in Scanning‐Electron Acoustic Microscopy of Ionic Crystals”, Journal of Applied Physics, 67, 1(1998)
【44】M. Jung, K. Y. Eun, J. K. Lee, Y. J. Baik, K. R. Lee, J. W. Park, “Growth of Carbon Nanotubes by Chemical Vapor Deposition”, Diamond and Related Materials, 10, 1235(2001)
【45】C. J. Lee, J. Park, J. M. Kim, Y. Huh, J. Y. Lee, K. S. No, “Low-Temperature Growth of Carbon Nanotubes by Thermal Chemical Vapor Deposition Using Pd, Cr, and Pt as co-Catalyst”, Chemical Physics Letters, 327, 277(2000)
【46】K. Hernadi, A. Fonseca, J. B. Nagy, A. Siska, I. Kiricsi, “Production of Nanotubes by the Catalytic Decomposition of Different Carbon-Containing Compounds”, Applied Catalysis A, 199, 245(2000)
【47】J. Li, C. Papadopoulos, M. Xu, M. Moskovits, “Highly-Ordered Carbon Nanotube Arrays for Electronics Applications”, Applied Physics Letters, 75, 367(1999)
【48】J. Li, C. Papadopoulos, J. Xu, “Conflict Monitoring Versus Selection-for-Action in Anterior Cingulate Cortex”, Nature, 402, 179(1999)
【49】J. Yue, Z. H. Wang, K. R. Cromack, A. J. Epstein, A. G. MacDiarmid, “Effect of Sulfonic-Acid Group on Polyaniline Backbone”, Journal of the American Chemical Society, 113, 2665(1991)
【50】D. R. Lide, H. P. R. Frederikse, “Handbook of Chemistry and Physics, CRC Press. London”, 75th, p51-52(1995)
【51】W. Chen, “Enhanced mechanical properties and morphological characterizations of poly(vinyl alcohol)-carbon nanotube composite films”, Appl. Surf. Sci., 252, 1404(2005)
【52】J. W. Mintmire, B. I. Dunlap and C. T. White, “Are fullerene
tubules metallic”, Phys. Rev. Lett., 68, 631(1992)
【53】T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi and T. Thio, “Electrical conductivity of individual carbon nanotubes”, Nature., 382, 53(1996)
【54】J. Robert, J. Chen, Y. Zhang, D. Wang, and H.J. Dai, “Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization”, J. Am. Chem. Soc., 3838(2001)
【55】M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell,J.Ma, R.H. Hauge, R.B. Weisman and R.E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes”, Science, 297, 593(2002)
【56】M. J. O’Connell, P. J. Boul, L. M. Ericson, C. B. Huffman, Y. Wang, E. H. Haroz, C. Kuper, J. Tour, K. D. Ausman and R. E.Smalley, “Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping”, Chem. Phys. Lett., 342, 265(2001)
【57】徐世昌, “生物性高分子-幾丁質與幾丁聚醣之介紹與應用”, 化工資訊, 15(2), 36(2001)
【58】陳美惠, 莊淑惠, 吳志津, “幾丁聚醣的物化特性”, 食品工業月刊, 31(10), 36(1999)
【59】P. J. Britto, K. S. V. Santhanam, P. M. Ajayan, “Carbon nanotube electrode for oxidation of dopamine”, Bioelectrochemistry and Bioenergetics, 41, 121(1996)
【60】J. Davis, R. J. Coles, H. A. O. Hill, “Protein electrochemistry at carbon nanotube electrode”, Electroanalical Chemistry, 40, 279(1997)
【61】H. Luo, Z. Shi, N. Li, Z. Gu, Q. Zhuang, “Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode”, Analytical Chemistry, 73, 915(2001)
【62】M. Musameh, J. Wang, M. Arben, Y. Lin, “Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes”, Electrochemistry Communications, 4, 743(2002)
【63】T. Ohsaka, P. R. Roy and T. Okajima, “Simultaneous electroanalysis of dopamine and ascorbic acid using poly (N,N-dimethylaniline)-modified electrodes”, Bioelectrochemistry., 59, 11(2003)
【64】M. D. Rubianes, G. A. Rivas, “Carbon nanotubes paste electrode”,
Electrochemistry Communications, 5, 689(2003)
【65】Y. C. Tsai, “Poly(vinyl alcohol)-assisted dispersion of multiwalled carbon nanotubes in aqueous solution for electroanalysis”, Electrochemistry Communication, 8, 956(2006)
【66】A. H. Liu and H. S. Zhou, “Effect of solution pH and ionic strength on the stability of poly(acrylic acid)-encapsulated multiwalled carbon nanotubes aqueous dispersion and its application for NADH sensor”, Biosensors and Bioelectronic, 22, 694(2006)
【67】C. Y. Wang, Q. X. Liu, X. Q. Shao and G. J. Yang, “One step fabrication of nanoelectrode ensembles formed via amphiphilic blockcopolymers self-assembly and selective voltammetric detection of uric acid in the presence of high ascorbic acid content”, Talanta, 71, 178(2007)
【68】L. Zhang, C. Zhang, J. Lian, “Electrochemical synthesis of polyaniline nano-networks on p-aminobenzenesulfonic acid functionalized glassy carbon electrode Its use for the simultaneous determination of ascorbic acid and uric acid”, Biosensors and Bioelectronics, 24, 690(2008)
【69】D. P. Quan, D. P. Tuyen, T. D. Lam, “Electrochmically selective determination of dopamine in the presence of ascorbic and uric acids on the surface of the modified Nafion/single wall carbon nanotube/poly(3-metgylthiophene) glassy carbon electrodes”, Colloids and Surfaces B: Biointerfaces, 88, 764(2011)
【70】R. Khan, M. Dhayal, “Chitosan/polyaniline hybrid conducting biopolymer base impedimetric immunosensor to detect Ochratoxin-A”, Biosensors and Bioelectronics, 24, 1700(2009)
【71】A. G. Yavuz, A. Uygun, “Preparation of substituted polyaniline/chitosan composites by in situ electropolymerization and their application to glucose sensing”, Carbohydrate Polymers, 81, 712(2010)
【72】Y. Wei, R. Hariharan, S. A. Patel, “Chemical and electrochemical copolymerization of aniline with alkyl ring-substituted anilines”, Macromolecules, 23, 758(1990)
【73】G. Jin, Y. Zhang, W. Cheng, “Poly(p-aminobenzene sulfonic acid)-modified glassy carbon electrode for simultaneous detection of dopamine and ascorbic acid”, Sensors and Actuator B: Chemical, 107, 528(2005)
【74】X. Jiang, L. Zhang, S. Dong, “Assemble of poly(aniline-co-o-aminobenzenesulfonic acid) three-dimensional tubal met-works onto ITO electrode and its application for the direct electrochemistry and electrocatalytic behavior of cytochromec”, Electrochemistry Communications, 8, 1137(2006)
【75】L. Zhang, C. Zhang, J. Lian, “electrochemical synthesis of polyaniline nano-networks on p-aminobenzenesulfonic acid functionalized glassy carbon electrode Its use for the simultaneous determination of ascorbic acid and uric acid”, Biosensor and Bioelectronic, 24, 69(2008)
【76】Y. T. Shieh, H. M. Wu, Y. K. Ywu, Y. C. Chung, “An investigation on dispersion of carbon nanotubes in chitosan aqueous solutions”, Colloid Polymer Science, 288, 377(2010)
【77】溫啟銘, “酸鹼應答型聚丙烯酸/多層奈米碳管複合材料之電化學特性研究”, 國立高雄應用科技大學化學工程級材料工程系碩士論文(2010)
【78】蔡雅晴, “奈米碳管/幾丁聚醣複合薄膜之電化學性質及用於感測之研究”, 國立高雄大學化學工程及材料工程學系專題報告(2010)
【79】J. Yue, Z. H. Wang, K. R. Cromack, A. J. Epstein, A. G. Macdiarmid, “Effect of sulfonic acid group on polyaniline backbone”, Journal of the American Chemistry Society, 113, 2665(1991)
【80】徐靜眉, “水溶性N-取代丙烯酸聚苯胺之結構與物性研究”, 私立中原大學化學工程學系研究所碩士論文(2001)。
【81】S. A. Chen, G.W. Hwang, “ Structure Characterization of Self-Acid-Doped Sulfonic Acid Ring-Substituted Polyaniline in Its Aqueous Solutions and as
Solid Film“, Macromolecules, 29, 3950(1996)
【82】B. Edward, P. Roman, S. Semion, S. Alexander , S. Avigdor, I. Gregory, K. Abraham, “Infrared optics applications of thin polyaniline emeraldine base films”, Synthetic Metals, 140, 49(2004)
【83】J. Lin, C. He, L. Zhang, S. Zhang, “ Sensitive amperometric immunosensor for a-fetoprotein based on carbon nanotube/gold nanoparticle doped chitosan film”, Analytical Biochemistry, 384, 130(2009)
【84】陳逸信, “苯胺共聚物導電高分子之電化學聚合及應用”, 國立成功大學工程研究所碩士論文(2002)
【85】蘇寶川, “改質聚苯胺對電致色變之影響”, 國立高雄應用科技大學化學工程與材料工程學學碩士論文(2009)
【86】徐靜眉, “水溶性 N-取代丙烯酸聚苯胺之結構與物性研究”, 私立中原大學化學工程學系碩士論文(2001)
【87】葉育睿, “ITO電極上無電聚合聚苯胺膜及其在高分子發光二極體的應用”, 國立中央大學碩士論文(2000)
【88】X.-L. Wei, Y. Z. Wang, S. M. Long, C. Bobeczko, A. J. Epstein, “Synthesis and Physical Properties of Highly Sulfonated Polyaniline”, Journal of the American Chemican Society, 118, 2545(1996)
【89】J. Yue, Z. H. Wang, K. R. Cromack, A. J. Epstein, A. G. MacDiarmid, “Effect of Sulfonic Acid Group on Polyaniline Backbone”, Journal of the American Chemican Society, 113, 2665(1991)
【90】A. J. Bard and L. R. Faulkner, “Electrochemical methods,fundamentals and applications”, John Wiley and Sons Inc., N.Y., 1st, 160(1980)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top