|
1.林振華, 林振富, 充電式鋰離子電池材料與應用, 全華科技圖書股份有限公司, 2001. 2.洪為民, 鋰離子二次電池原理、特性與應用. 工業材料, 1993. 79期. p97.3.B. Scrosati, ChemInform Abstract: Lithium Rocking Chair Batteries: An Old Concept? ChemInform, 1992. 23(51). 4.李文雄, 鋰電池E世代的能源. 科學發展, 2003. 362. 32.5.C. Julien and G.-A. Nazri, Applications of Solid-State Ionic MaterialsSolid State Batteries: Materials Design and Optimization, 1994, Springer US. p. 579. 6.W.D. Johnston, R.R. Heikes, and D. Sestrich, The preparation, crystallo- -graphy, and magnetic properties of the LixCo(1−x)O system. Journal of Physics and Chemistry of Solids, 1958. 7(1). 1. 7.K. Mizushima, P.C. Jones, P.J. Wiseman, and J.B. Goodenough, LixCoO2 (0 8.王憲程, 呂宗昕, 奈米科技與鋰離子二次電池電極材料. 台大工程學刊, 2002. 84. 129.
9.G.X. Wang, S. Zhong, D.H. Bradhurst, S.X. Dou, and H.K. Liu, Synthesis and characterization of LiNiO2 compounds as cathodes for rechargeable lithium batteries. Journal of Power Sources, 1998. 76(2). 141.
10.M.S. Islam, R.A. Davies, and J.D. Gale, Structural and Electronic Properties of the Layered LiNi0.5Mn0.5O2 Lithium Battery Material. Chemistry of Materials, 2003. 15(22). 4280.
11.K.M. Shaju and P.G. Bruce, A Stoichiometric Nano-LiMn2O4 Spinel Electrode Exhibiting High Power and Stable Cycling. Chemistry of Materials, 2008. 20(17). 5557.
12.C. Delmas, Alkali metal intercalation in layered oxides. Materials Science and Engineering: B, 1989. 3(1–2). 97.
13.A. Yamada, M. Tanaka, K. Tanaka, and K. Sekai, Jahn–Teller instability in spinel Li–Mn–O. Journal of Power Sources, 1999. 81–82(0). 73.
14.S.H. Chang, K.S. Ryu, K.M. Kim, M.S. Kim, I.K. Kim, and S.G. Kang, Electrochemical properties of cobalt-exchanged spinel lithium manganese oxide. Journal of Power Sources, 1999. 84(1). 134.
15.A.D. Pasquier, F. Orsini, A.S. Gozdz, and J.M. Tarascon, Electrochemical behaviour of LiMn2O4–PPy composite cathodes in the 4-V region. Journal of Power Sources, 1999. 81–82(0). 607.
16.C. Masquelier, A.K. Padhi, K.S. Nanjundaswamy, and J.B. Goodenough, New Cathode Materials for Rechargeable Lithium Batteries: The 3-D Framework Structures Li3Fe2(XO4)3(X=P, As). Journal of Solid State Chemistry, 1998. 135(2). 228.
17.A. Manthiram and J.B. Goodenough, Lithium insertion into Fe0(MO4)3 frameworks: Comparison of M = W with M = Mo. Journal of Solid State Chemistry, 1987. 71(2). 349.
18.T.-H. Cho and H.-T. Chung, Synthesis of olivine-type LiFePO4 by emulsion-drying method. Journal of Power Sources, 2004. 133(2). 272.
19.A. Eftekhari, Fabrication of 5 V lithium rechargeable micro-battery. Journal of Power Sources, 2004. 132(1–2). 240.
20.A.N. Dey, Electrochemical alloying of lithium in organic electrolytes. Journal of Electrochemical Society, 1971(118). 1547.
21.費定國, 李日琪, 鋰離子電池陽極材料開發. 工業材料, 2002. 165. 152.
22.H. Azuma, H. Imoto, S.i. Yamada, and K. Sekai, Advanced carbon anode materials for lithium ion cells. Journal of Power Sources, 1999. 81–82(0). 1.
23.M. Latorre-Sanchez, P. Atienzar, G. Abellán, M. Puche, V. Fornés, A. Ribera, and H. García, The synthesis of a hybrid graphene–nickel/manganese mixed oxide and its performance in lithium-ion batteries. Carbon, 2012. 50(2). 518.
24.X. Huang, X. Zhou, K. Qian, D. Zhao, Z. Liu, and C. Yu, A magnetite nanocrystal/graphene composite as high performance anode for lithium-ion batteries. Journal of Alloys and Compounds, 2012. 514. 76.
25.Y.J. Mai, S.J. Shi, D. Zhang, Y. Lu, C.D. Gu, and J.P. Tu, NiO–graphene hybrid as an anode material for lithium ion batteries. Journal of Power Sources, 2012. 204. 155.
26.B.Z. Jang, C. Liu, D. Neff, Z. Yu, M.C. Wang, W. Xiong, and A. Zhamu, Graphene surface-enabled lithium ion-exchanging cells: next-generation high-power energy storage devices. Nano Lett, 2011. 11(9). 3785.
27.Z. Wang, G. Chen, and D. Xia, Coating of multi-walled carbon nanotube with SnO2 films of controlled thickness and its application for Li-ion battery. Journal of Power Sources, 2008. 184(2). 432.
28.H. Mukaibo, T. Sumi, T. Yokoshima, T. Momma, and T. Osaka, Electrodeposited Sn-Ni Alloy Film as a High Capacity Anode Material for Lithium-Ion Secondary Batteries. Electrochemical and Solid-State Letters, 2003. 6(10). A218.
29.P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000. 407(6803). 496.
30.M.-S. Park, Y.-J. Lee, S. Rajendran, M.-S. Song, H.-S. Kim, and J.-Y. Lee, Electrochemical properties of Si/Ni alloy–graphite composite as an anode material for Li-ion batteries. Electrochimica Acta, 2005. 50(28). 5561.
31.S. Zhao and Q. Qin, Li V Si O thin film electrolyte for all-solid-state Li-ion battery. Journal of Power Sources, 2003. 122(2). 174.
32.J. Neal, A. Behan, R. Ibrahim, H. Blythe, M. Ziese, A. Fox, and G. Gehring, Room-Temperature Magneto-Optics of Ferromagn etic Transition-Metal-Doped ZnO Thin Films. Physical Review Letters, 2006. 96(19).
33.Q. Li, V. Kumar, Y. Li, H. Zhang, T.J. Marks, and R.P.H. Chang, Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions. Chemistry of Materials, 2005. 17(5). 1001.
34.S. Goto, N. Fujimura, T. Nishihara, and T. Ito, Heteroepitaxy of zinc oxide thin films, considering non-epitaxial preferential orientation. Journal of Crystal Growth, 1991. 115(1–4). 816.
35.Z. Zhou, K. Kato, T. Komaki, M. Yoshino, H. Yukawa, M. Morinaga, and K. Morita, Effects of dopants and hydrogen on the electrical conductivity of ZnO. Journal of the European Ceramic Society, 2004. 24(1). 139.
36.M. Izaki and T. Omi, Transparent zinc oxide films prepared by electrochemical reaction. Applied Physics Letters, 1996. 68(17). 2439.
37.S. Peulon and D. Lincot, Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films. Advanced Materials, 1996. 8(2). 166.
38.X.H. Huang, X.H. Xia, Y.F. Yuan, and F. Zhou, Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochimica Acta, 2011. 56(14). 4960.
39.J. Liu, Y. Li, R. Ding, J. Jiang, Y. Hu, X. Ji, Q. Chi, Z. Zhu, and X. Huang, Carbon/ZnO Nanorod Array Electrode with Significantly Improved Lithium Storage Capability. The Journal of Physical Chemistry C, 2009. 113(13). 5336.
40.Z. Wu, L. Qin, and Q. Pan, Fabrication and electrochemical behavior of flower-like ZnO–CoO–C nanowall arrays as anodes for lithium-ion batteries. Journal of Alloys and Compounds, 2011. 509(37). 9207.
41.C.Q. Zhang, J.P. Tu, Y.F. Yuan, X.H. Huang, X.T. Chen, and F. Mao, Electrochemical Performances of Ni-Coated ZnO as an Anode Material for Lithium-Ion Batteries. Journal of The Electrochemical Society, 2007. 154(2). A65.
42.J.-H. Lee, M.-H. Hon, Y.-W. Chung, and I.-C. Leu, The effect of TiO2 coating on the electrochemical performance of ZnO nanorod as the anode material for lithium-ion battery. Applied Physics A, 2010. 102(3). 545.
43.G. Zhou, D.-W. Wang, L.-C. Yin, N. Li, F. Li, and H.-M. Cheng, Oxygen Bridges between NiO Nanosheets and Graphene for Improvement of Lithium Storage. ACS Nano, 2012. 6(4). 3214.
44.X.H. Huang, J.P. Tu, C.Q. Zhang, X.T. Chen, Y.F. Yuan, and H.M. Wu, Spherical NiO-C composite for anode material of lithium ion batteries. Electrochimica Acta, 2007. 52(12). 4177.
45.C.-T. Hsieh, S.-Y. Yang, and J.-Y. Lin, Electrochemical deposition and superhydrophobic behavior of ZnO nanorod arrays. Thin Solid Films, 2010. 518(17). 4884.
46.http://nchu.creatop.com.tw/.
47.http://www.ncku.edu.tw/~facility/.
48.M.S. Wu and K.C. Huang, Fabrication of nickel hydroxide electrodes with open-ended hexagonal nanotube arrays for high capacitance supercapacitors. Chemical Communications, 2011. 47(44). 12122.
49.X.H. Huang, J.P. Tu, B. Zhang, C.Q. Zhang, Y. Li, Y.F. Yuan, and H.M. Wu, Electrochemical properties of NiO–Ni nanocomposite as anode material for lithium ion batteries. Journal of Power Sources, 2006. 161(1). 541.
50.E. Hosono, S. Fujihara, I. Honma, and H. Zhou, The high power and high energy densities Li ion storage device by nanocrystalline and mesoporous Ni/NiO covered structure. Electrochemistry Communications, 2006. 8(2). 284.
51.X.H. Huang, J.P. Tu, X.H. Xia, X.L. Wang, J.Y. Xiang, L. Zhang, and Y. Zhou, Morphology effect on the electrochemical performance of NiO films as anodes for lithium ion batteries. Journal of Power Sources, 2009. 188(2). 588.
|
| |