(34.237.52.11) 您好!臺灣時間:2021/05/18 14:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:楊昊霖
研究生(外文):Hao-Lin Yang
論文名稱:銀奈米板 : 十四烷基三甲基銨離子作為晶種添加劑對合成的影響及作為觸媒感測葡萄糖之特性研究
論文名稱(外文):Silver nanoplates : Tetradecyltrimethylammonium ions as seed additives on the synthesis and their application as electrochemical catalysts for sensing β-D-glucose
指導教授:李建良李建良引用關係
指導教授(外文):Chien-Liang Lee
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:139
中文關鍵詞:銀奈米板葡萄糖氧化
外文關鍵詞:silver nanoplateglucose oxidation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:905
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
利用十四烷基三甲基銨離子(Tetradecyltrimethylammonium ions,C14TA+)作為晶種合成液添加劑,於晶種生長過程中,C14TA+會吸附於銀晶種(111)晶面,進而致使高產率銀奈米板產生,板狀銀奈米觸媒產率最高可達83%,其中三角板產率則可高達60%,電子顯微鏡電子束選區繞射分析結果顯示三角形銀奈米板其主結構為(111)晶面。在本研究中,藉由增加表面吸附C14TA+之晶種添加量從5 μl到15 μl 和20 μl可使合成三角形銀奈米板之平均邊徑由180 nm變化為140 nm至102 nm;同時,銀奈米板表面電漿子共振光譜中的縱向偶極共振峰從807 nm藍位移至740 nm 與655 nm,這當中顯示隨著板徑減少,其電漿子共振距離減少之材料物理結果。
再者,將所合成的銀奈米板作為觸媒應用於電化學感測葡萄糖反應,由循環伏特法分析結果指出在0.7~0.4V (vs. Ag/AgCl)之間皆會出現葡萄糖氧化峰,顯示銀奈米板與葡萄糖氧化反應有電化學反應作用。在0.65V(vs. Ag/AgCl)下,發現板邊徑102 nm、140 nm與180 nm之銀奈米三角板之葡萄糖氧化電流分別為0.78 mA mg-1、0.73 mA mg-1與0.09 mA mg-1,在相同條件下比較實驗結果顯示小板徑銀奈米板具有較佳的催化活性。同時,經由欠電位沈積鉛實驗測定奈米銀板邊徑102 nm、140 nm與180 nm之電化學活性面積分別為0.056 cm2、0.049 cm2與0.028 cm2,由此可知102 nm銀奈米板的高活性是由於高活性面積所導致。計時安培法測試奈米銀板對葡萄糖氧化反應之靈敏度分析結果顯示,板邊徑102nm、140nm與180nm其值分別為0.527、0.810與1.328 mA mM-1 mg-1,其偵測靈敏度比較大小分別為180 nm > 140 nm> 102 nm,顯示大尺寸銀奈米板具有較佳的葡萄糖感測靈敏度。
In this study, tetradecyltrimethyl ammonium ions (C14TA+) were used as a trace additive in a seed solution for blocking the (111) seed surface to govern the growth direction on nanoplate in the growth pathway, leading to a high-yield production (84%) of the Ag nanoplates with mixed morphologies, mainly triangular nanoplates (60%) and nanodisks. The spectra of the obtained nanoplate solution showed a high intensity peak attributed to the in-plane dipole resonance and a low-intensity peak at 400 nm. By increasing the amount of C14TA+ -adsorbed seed amount from 5 μl to 15 μl and 20 μl, the mean edge length of triangular nanoplates could be altered from ~180 nm to ~140 nm and ~102 nm. The in-plane dipole resonance peak corresponding to change in the mean edge length shifted from 807 nm to 740 nm and 655 nm, respectively.
To investigate the practical feasibility of application of the proposed method, the prepared nanoplates were used as an electrocatalyst for sensing glucose oxidation reaction (GOR). An analysis conducted using a cyclic voltammetry showed that these nanoplates have high activity towards the GOR and that the GOR current occurred over per milligram catalyst were 0.78 mA mg-1, 0.73 mA mg-1, and 0.09 mA mg-1 for 102 nm, 140 nm, and 180nm nanoplates, respectively. Simultaneously, the results measured by under potential deposition of Pb showed that electrochemical surface areas (ESAs) on 102 nm, 140 nm, and 180 nm nanoplates were 0.056 cm2, 0.049 cm2, and 0.028 cm2, respectively. The highest activity on 102 nm nanoplates attributed to the largest ESA was gained. Remarkably, comparing with the other two nanoplates, the 180nm nanoplates with largest (111) plane showed highest GOR sensitivity, 1.328 mA mM-1 cm-2, provided by chronoamperometry method.
摘要 I
Abstract III
目錄 V
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1-1 前言 1
1-3 奈米材料之簡介 4
1-3.1 奈米粒子之量子尺寸效應 5
1-4 葡萄糖之簡介 8
1-4.1 葡萄糖氧化之應用 8
1-5 研究動機 10
1-6 研究目的 11
第二章 文獻回顧 12
2-1 前言 12
2-2 晶種法合成金屬奈米粒子 13
2-3 葡萄糖感測器 43
2-3.1 酵素型葡萄糖感測器簡介 44
2-3.2 非酵素型葡萄糖感測器 45
2-3.2.1 鉑觸媒應用於葡萄糖感測 49
2-3.2.2 鈀觸媒應用於葡萄糖感測 55
2-3.2.3 金觸媒應用於葡萄糖感測 57
2-3.2.4 鎳觸媒應用於葡萄糖感測 61
2-3.2.5 銀觸媒應用於葡萄糖感測 64
2-3.2.6 合金觸媒應用於葡萄糖感測 67
第三章 實驗方法 73
3-1 實驗藥品與儀器 73
3-2 利用C14TA+作為晶種添加劑製備銀奈米板之實驗步驟 76
3-3 銀奈米板材料分析 78
3-4 電化學分析實驗 79
第四章 結果與討論 83
4-1 C14TA+作為晶種添加劑製備銀奈米板之影響 83
4-2 銀奈米板應用於電化學催化葡萄糖氧化反應 93
第五章 結論 113
參考文獻 114
[1]呂慧菁, 電化學葡萄糖感測試片之研發, 中興大學碩士論文, 2003.
[2]林宗榮, 中孔電鎳電極在非酵素葡萄糖感測器之研究, 碩士論文, 2007.
[3]S. Wild, G. Roglic, A. Green, R. Sicree, H. King, Global Prevalence of Diabetes, Diabetes Care 27 (2004) 1047-1053.
[4]M. Wooten, J.H. Shim, W. Gorski, Amperometric Determination of Glucose at Conventional vs. Nanostructured Gold Electrodes in Neutral Solutions, Electroanalysis 22 1275-1277.
[5]R. Wilson, A.P.F. Turner, Glucose oxidase: an ideal enzyme, Biosens. Bioelectron. 7 (1992) 165-185.
[6]Y. Sun, H. Buck, T.E. Mallouk, Combinatorial Discovery of Alloy Electrocatalysts for Amperometric Glucose Sensors, Anal. Chem. 73 (2001) 1599-1604.
[7]Y. Myung, D.M. Jang, Y.J. Cho, H.S. Kim, J. Park, J.-U. Kim, Y. Choi, C.J. Lee, Nonenzymatic Amperometric Glucose Sensing of Platinum, Copper Sulfide, and Tin Oxide Nanoparticle-Carbon Nanotube Hybrid Nanostructures, J. Phys. Chem. C 113 (2009) 1251-1259.
[8]川合知二, 圖解 奈米科技, 工業技術研究院, 2002.
[9]馬振基, 奈米材料科技原理與運用, 全華科技圖書股份有限公司, 2003.
[10]K.E. Toghill, R.G. Compton, Electrochemical Non-enzymatic Glucose Sensors: A Perspective and an Evaluation, Int. J. Electrochem. Sci. 5 (2010) 1246-1301.
[11]B. Tao, F. Miao, P.K. Chu, Preparation and characterization of a novel nickel–palladium electrode supported by silicon nanowires for direct glucose fuel cell, Electrochim. Acta 65 (2012) 149-152.
[12]J. Chen, C.X. Zhao, M.M. Zhi, K. Wang, L. Deng, G. Xu, Alkaline direct oxidation glucose fuel cell system using silver/nickel foams as electrodes, Electrochim. Acta 66 (2012) 133-138.
[13]D. Basu, S. Basu, Performance studies of Pd–Pt and Pt–Pd–Au catalyst for electro-oxidation of glucose in direct glucose fuel cell, Int. J. Hydrogen Energy 37 4678-4684.
[14]M. Tominaga, T. Shimazoe, M. Nagashima, H. Kusuda, A. Kubo, Y. Kuwahara, I. Taniguchi, Electrocatalytic oxidation of glucose at gold–silver alloy, silver and gold nanoparticles in an alkaline solution, J. Electroanal. Chem. 590 (2006) 37-46.
[15]E. Skou, The electrochemical oxidation of glucose on platinum. The oxidation in 1 M H2SO4, Electrochimica Acta 22 (1977) 313-318.
[16]F. Largeaud, K.B. Kokoh, B. Beden, C. Lamy, On the electrochemical reactivity of anomers: electrocatalytic oxidation of α- and β-d-glucose on platinum electrodes in acid and basic media, J. Electroanal. Chem. 397 (1995) 261-269.
[17]M.F.L. de Mele, H.A. Videla, A.J. Arvia, Potentiodynamic Study of Glucose Electro-Oxidation at Bright Platinum Electrodes, J. Electrochem. Soc. 129 (1982) 2207-2213.
[18]Z. Liu, L. Huang, L. Zhang, H. Ma, Y. Ding, Electrocatalytic oxidation of d-glucose at nanoporous Au and Au–Ag alloy electrodes in alkaline aqueous solutions, Electrochim. Acta 54 (2009) 7286-7293.
[19]T.-M. Cheng, T.-K. Huang, H.-K. Lin, S.-P. Tung, Y.-L. Chen, C.-Y. Lee, H.-T. Chiu, (110)-Exposed Gold Nanocoral Electrode as Low Onset Potential Selective Glucose Sensor, ACS Appl. Mater. Interfaces 2 (2010) 2773-2780.
[20]H. Quan, S.-U. Park, J. Park, Electrochemical oxidation of glucose on silver nanoparticle-modified composite electrodes, Electrochim. Acta 55 2232-2237.
[21]Y. Ding, Y. Wang, L. Su, H. Zhang, Y. Lei, Preparation and characterization of NiO-Ag nanofibers, NiO nanofibers, and porous Ag: towards the development of a highly sensitive and selective non-enzymatic glucose sensor, J. Mater. Chem. 20 (2010) 9918-9926.
[22]I. Becerik, F. Kadirgan, The electrocatalytic properties of palladium electrodes for the oxidation of d-glucose in alkaline medium, Electrochim. Acta 37 (1992) 2651-2657.
[23]M. Fleischmann, K. Korinek, D. Pletcher, The oxidation of organic compounds at a nickel anode in alkaline solution, J. ELECTROANAL. CHEM. INTERFACIAL ELECTROCHEM 31 (1971) 39-49.
[24]M. Fleischmann, K. Korinek, D. Pletcher, The kinetics and mechanism of the oxidation of amines and alcohols at oxide-covered nickel, silver, copper, and cobalt electrodes, J. Chem. Soc. Perk. Trans. 2 (1972) 1396-1403.
[25]S.H. Lim, J. Wei, J. Lin, Q. Li, J. KuaYou, A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode, Biosens. Bioelectron. 20 (2005) 2341-2346.
[26]R.C. Jin, Y.W. Cao, C.A. Mirkin, K.L. Kelly, G.C. Schatz, J.G. Zheng, Photoinduced conversion of silver nanospheres to nanoprisms, Science 294 (2001) 1901-1903.
[27]楊仲準, 量子尺寸效應於奈米超導金屬之研究, 物理專文.
[28]C.-L. Lee, C.-M. Syu, Electrochemical synthesis of hexadecyltrimethylammonium-coated Ag nanopeanuts and their self-assembly to nanonets, Colloid Surf. A-Physicochem. Eng. Asp. 358 (2010) 158-162.
[29]N.R. Jana, L. Gearheart, C.J. Murphy, Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods, J. Phys. Chem. B 105 (2001) 4065-4067.
[30]C.J. Murphy, N.R. Jana, Controlling the aspect ratio of inorganic nanorods and nanowires, Adv. Mater. 14 (2002) 80-82.
[31]T.K. Sau, C.J. Murphy, Role of ions in the colloidal synthesis of gold nanowires, Philos. Mag. 87 (2007) 2143-2158.
[32]N.R. Jana, L. Gearheart, C.J. Murphy, Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template, Adv. Mater. 13 (2001) 1389-1393.
[33]S. Chen, Z. Fan, D.L. Carroll, Silver Nanodisks: Synthesis, Characterization, and Self-Assembly, J. Phys. Chem. B 106 (2002) 10777-10781.
[34]S. Chen, D.L. Carroll, Synthesis and Characterization of Truncated Triangular Silver Nanoplates, Nano Lett. 2 (2002) 1003-1007.
[35]S. Chen, D.L. Carroll, Silver Nanoplates : Size Control in Two Dimensions and Formation Mechanisms, J. Phys. Chem. B 108 (2004) 5500-5506.
[36]C.J. Orendorff, T.M. Alam, D.Y. Sasaki, B.C. Bunker, J.A. Voigt, Phospholipid− Gold Nanorod Composites, ACS Nano 3 (2009) 971-983.
[37]C.J. Murphy, L.B. Thompson, A.M. Alkilany, P.N. Sisco, S.P. Boulos, S.T. Sivapalan, J.A. Yang, D.J. Chernak, J. Huang, The Many Faces of Gold Nanorods, The Journal of Physical Chemistry Letters 1 (2010) 2867-2875.
[38]Y. Niidome, Y. Nakamura, K. Honda, Y. Akiyama, K. Nishioka, H. Kawasaki, N. Nakashima, Characterization of silver ions adsorbed on gold nanorods: surface analysis by using surface-assisted laser desorption/ionization time-of-flight mass spectrometry, Chem. Commun. (2009) 1754-1756.
[39]Z.M. Sui, X. Chen, L.Y. Wang, L.M. Xu, W.C. Zhuang, Y.C. Chai, C.J. Yang, Capping effect of CTAB on positively charged Ag nanoparticles, Physica E 33 (2006) 308-314.
[40]J. Zeng, J. Tao, W. Li, J. Grant, P. Wang, Y. Zhu, Y. Xia, A Mechanistic Study on the Formation of Silver Nanoplates in the Presence of Silver Seeds and Citric Acid or Citrate Ions, Chem.-Asian J. 6 (2011) 376-379.
[41]Y.J. Xiong, A.R. Siekkinen, J.G. Wang, Y.D. Yin, M.J. Kim, Y.N. Xia, Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide, J. Mater. Chem. 17 (2007) 2600-2602.
[42]Y. Sun, Y. Xia, Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science 298 (2002) 2176-2179.
[43]X. He, X. Zhao, Y. Chen, J. Feng, The evidence for synthesis of truncated triangular silver nanoplates in the presence of CTAB, Mater. Charact. 59 (2008) 380-384.
[44]J. Roh, E.-J. Park, K. Park, J. Yi, Y. Kim, Fast preparation of citrate-stabilized silver nanoplates and its nanotoxicity, Korean J. Chem. Eng. 27 (2010) 1897-1900.
[45]J. Roh, J. Yi, Y. Kim, Rapid, Reversible Preparation of Size-Controllable Silver Nanoplates by Chemical Redox, Langmuir 26 (2010) 11621-11623.
[46]Q. Zhang, N. Li, J. Goebl, Z. Lu, Y. Yin, A Systematic Study of the Synthesis of Silver Nanoplates: Is Citrate a "Magic" Reagent, J. Am. Chem. Soc. 133 (2011) 18931-18939.
[47]D.S. Kilin, O.V. Prezhdo, Y. Xia, Shape-controlled synthesis of silver nanoparticles: Ab initio study of preferential surface coordination with citric acid, Chem. Phys. Lett. 458 (2008) 113-116.
[48]Y. Wang, J. Fang, Selective Epitaxial Growth of Silver Nanoplates, Angew. Chem. Int. Ed. 50 (2011) 992-993.
[49]B. Nikoobakht, M.A. El-Sayed, Evidence for Bilayer Assembly of Cationic Surfactants on the Surface of Gold Nanorods, Langmuir 17 (2001) 6368-6374.
[50]B. Nikoobakht, M.A. El-Sayed, Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method, Chem. Mat. 15 (2003) 1957-1962.
[51]C.-L. Lee, C.-M. Syu, H.-P. Chiou, C.-H. Chen, H.-L. Yang, High-yield, size-controlled synthesis of silver nanoplates and their applications as methanol-tolerant electrocatalysts in oxygen reduction reaction, Int. J. Hydrogen Energy 36 (2011) 10502-10512.
[52]N.R. Jana, L. Gearheart, C.J. Murphy, Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio, Chem. Commun. (2001) 617-618.
[53]A.E.G. Cass, G. Davis, G.D. Francis, H.A.O. Hill, W.J. Aston, I.J. Higgins, E.V. Plotkin, L.D.L. Scott, A.P.F. Turner, Ferrocene-mediated enzyme electrode for amperometric determination of glucose, Anal. Chem. 56 (1984) 667-671.
[54]A. Mulchandani, S. Pan, Ferrocene-Conjugatedm-Phenylenediamine Conducting Polymer-Incorporated Peroxidase Biosensors, Anal. Biochem. 267 (1999) 141-147.
[55]J.-K. Shim, D.-O. Jung, J.-W. Park, D.-W. Kim, D.-M. Ha, K.-Y. Lee, Molecular cloning of the heat-shock cognate 70 (Hsc70) gene from the two-spotted spider mite, Tetranychus urticae, and its expression in response to heat shock and starvation, Comp. Biochem. Physiol. B-Biochem. Mol. Biol. 145 (2006) 288-295.
[56]S. Park, Y. Xie, M.J. Weaver, Electrocatalytic Pathways on Carbon-Supported Platinum Nanoparticles:  Comparison of Particle-Size-Dependent Rates of Methanol, Formic Acid, and Formaldehyde Electrooxidation, Langmuir 18 (2002) 5792-5798.
[57]D. Pletcher, Electrocatalysis: present and future, J. Appl. Electrochem. 14 (1984) 403-415.
[58]G. Kokkindis, J.M. Leger, C. Lamy, Structural effects in electrocatalysis: Oxidation of D-glucose on pt (100), (110) and (111) single crystal electrodes and the effect of upd adlayers of Pb, Tl and Bi, J. ELECTROANAL. CHEM. INTERFACIAL ELECTROCHEM 242 (1988) 221-242.
[59]J.-S. Ye, Y. Wen, W. De Zhang, L. Ming Gan, G.Q. Xu, F.-S. Sheu, Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes, Electrochem. Commun. 6 (2004) 66-70.
[60]L.D. Burke, T.G. Ryan, The adatom/incipient hydrous oxide mediator model for reactions on silver in base, J. Appl. Electrochem. 20 (1990) 1053-1058.
[61]K.B. Kokoh, J.M. Léger, B. Beden, C. Lamy, “On line” chromatographic analysis of the products resulting from the electrocatalytic oxidation of d-glucose on Pt, Au and adatoms modified Pt electrodes—Part I. Acid and neutral media, Electrochim. Acta 37 (1992) 1333-1342.
[62]S. Hughes, D.C. Johnson, Amperometric detection of simple carbohydrates at platinum electrodes in alkaline solutions by application of a triple-pulse potential waveform, Anal. Chim. Acta 132 (1981) 11-22.
[63]S. Park, H. Boo, T.D. Chung, Electrochemical non-enzymatic glucose sensors, Anal. Chim. Acta 556 (2006) 46-57.
[64]M.F.L. de Mele, H.A. Videla, A.J. Arvía, The electrooxidation of glucose on platinum electrodes in buffered media, Bioelectrochem. Bioenerg. 10 (1983) 239-249.
[65]Y. Bai, W. Yang, Y. Sun, C. Sun, Enzyme-free glucose sensor based on a three-dimensional gold film electrode, ens. Actuator B-Chem. 134 (2008) 471-476.
[66]Y.B. Vassilyev, O.A. Khazova, N.N. Nikolaeva, Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part II. Effect of the nature of the electrode and the electrooxidation mechanism, J. ELECTROANAL. CHEM. INTERFACIAL ELECTROCHEM 196 (1985) 127-144.
[67]M. Pasta, F. La Mantia, Y. Cui, Mechanism of glucose electrochemical oxidation on gold surface, Electrochim. Acta 55 (2010) 5561-5568.
[68]P. Parpot, N. Nunes, A.P. Bettencourt, Electrocatalytic oxidation of monosaccharides on gold electrode in alkaline medium: Structure–reactivity relationship, J. Electroanal. Chem. 596 (2006) 65-73.
[69]M.W. Hsiao, R.R. Adzic, E.B. Yeager, Electrochemical oxidation of glucose on single crystal and polycrystalline gold surfaces in phosphate buffer, J. Electrochem. Soc. 143 (1996) 759-767.
[70]N.N. Nikolaeva, O.A. Khazova, Y.B. Vasil'ev, OXYDATION ELECTROCATALYTIQUE DU GLUCOSE SUR LE PLATINE ET L'OR EN MILIEU AQUEUX, Russ. J. Electrochem. 19 (1983) 133.
[71]M.W. Hsiao, R.R. Adzic, E.B. Yeager, The effects of adsorbed anions on the oxidation of D-glucose on gold single crystal electrodes, Electrochim. Acta 37 (1992) 357-363.
[72]P. Oliva, J. Leonardi, J.F. Laurent, C. Delmas, J.J. Braconnier, M. Figlarz, F. Fievet, A.d. Guibert, Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides, J. Power Sources 8 (1982) 229-255.
[73]K.E. Toghill, L. Xiao, M.A. Phillips, R.G. Compton, The non-enzymatic determination of glucose using an electrolytically fabricated nickel microparticle modified boron-doped diamond electrode or nickel foil electrode, ens. Actuator B-Chem. 147 (2010) 642-652.
[74]J.M. DeMott, T.P. Tougas, E.G.E. Jahngen, Optimization of Response of the Silver Oxide Electrode for the Detection of Carbohydrates and Related Compounds, Electroanalysis 10 (1998) 836-841.
[75]J.M. DeMott, E.G.E. Jahngen, Determination of Amino Acids at a Silver Oxide/Silver Phosphate Electrode and the Analysis of Structure-Response Relationships, Electroanalysis 17 (2005) 599-606.
[76]H. Quan, S.-U. Park, J. Park, Electrochemical oxidation of glucose on silver nanoparticle-modified composite electrodes, Electrochim. Acta 55 (2010) 2232-2237.
[77]B. Beden, F. Largeaud, K.B. Kokoh, C. Lamy, Fourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of d-glucose: Identification of reactive intermediates and reaction products, Electrochim. Acta 41 (1996) 701-709.
[78]V. Bansal, V. Li, A.P. O'Mullane, S.K. Bhargava, Shape dependent electrocatalytic behaviour of silver nanoparticles, Crystengcomm 12 (2010) 4280-4286.
[79]C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, T. Li, Anisotropic Metal Nanoparticles:Synthesis, Assembly, and Optical Applications, J. Phys. Chem. B 109 (2005) 13857-13870.
[80]N.R. Jana, L. Gearheart, C.J. Murphy, Evidence for Seed-Mediated Nucleation in the Chemical Reduction of Gold Salts to Gold Nanoparticles, Chem. Mat. 13 (2001) 2313-2322.
[81]C.-L. Lee, H.-P. Chiou, C.-M. Syu, C.-C. Wu, Silver triangular nanoplates as electrocatalyst for oxygen reduction reaction, Electrochem. Commun. 12 (2010) 1609-1613.
[82]K.G. Stamplecoskie, J.C. Scaiano, V.S. Tiwari, H. Anis, Optimal Size of Silver Nanoparticles for Surface-Enhanced Raman Spectroscopy, J. Phys. Chem. C 115 (2011) 1403-1409.
[83]I. Pastoriza-Santos, L.M. Liz-Marzan, Colloidal silver nanoplates. State of the art and future challenges, J. Mater. Chem. 18 (2008) 1724-1737.
[84]R.G. Barradas, G.H. Fraser, Kinetic Studies of The AgO/Ag2O Electrode in Alkaline Solutions, Can. J. Chem. 42 (1964) 2488-2495.
[85]T.D. Tran, S.H. Langer, Electrochemical measurement of platinum surface areas on particulate conductive supports, Anal. Chem. 65 (1993) 1805-1807.
[86]L.-l. Fang, Q. Tao, M.-f. Li, L.-w. Liao, D. Chen, Y.-x. Chen, Determination of the real surface area of Palladium electrode, Chin. J. Chem. Phys. 23 (2010) 543-548.
[87]M.C. Giménez, A.J. Ramirez-Pastor, E.P.M. Leiva, A model for underpotential deposition in the presence of anions, J. Chem. Phys. 132 (2010) 184703.
[88]L. Meng, J. Jin, G. Yang, T. Lu, H. Zhang, C. Cai, Nonenzymatic Electrochemical Detection of Glucose Based on Palladium−Single-Walled Carbon Nanotube Hybrid Nanostructures, Anal. Chem. 81 (2009) 7271-7280.
[89]F. Xu, K. Cui, Y. Sun, C. Guo, Z. Liu, Y. Zhang, Y. Shi, Z. Li, Facile synthesis of urchin-like gold submicrostructures for nonenzymatic glucose sensing, Talanta 82 (2010) 1845-1852.
[90]T.G.S. Babu, T. Ramachandran, Development of highly sensitive non-enzymatic sensor for the selective determination of glucose and fabrication of a working model, Electrochim. Acta 55 (2010) 1612-1618.
[91]X. Chen, H. Pan, H. Liu, M. Du, Nonenzymatic glucose sensor based on flower-shaped Au@Pd core–shell nanoparticles–ionic liquids composite film modified glassy carbon electrodes, Electrochim. Acta 56 (2010) 636-643.
[92]Q. Yi, F. Niu, W. Yu, Pd-modified TiO2 electrode for electrochemical oxidation of hydrazine, formaldehyde and glucose, Thin Solid Films 519 (2011) 3155-3161.
[93]P. Parpot, P.R.B. Santos, A.P. Bettencourt, Electro-oxidation of d-mannose on platinum, gold and nickel electrodes in aqueous medium, J. Electroanal. Chem. 610 (2007) 154-162.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top