(3.238.173.209) 您好!臺灣時間:2021/05/16 21:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:謝文浩
研究生(外文):Wun-Hao Sie
論文名稱:製備功能性離子液體/奈米孔洞複合吸附劑並應用於捕獲燃煤電廠廢氣中的二氧化碳
論文名稱(外文):Fabrication of task-specific ionic liquids/nanoporous adsorbents composites for the CO2 capturefrom flue gas of coal-fired power plants
指導教授:劉守恒劉守恒引用關係
指導教授(外文):Shou-Heng Liu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:101
畢業學年度:100
語文別:中文
論文頁數:273
中文關鍵詞:功能性離子液體中孔洞材料二氧化碳捕獲複合式固體吸附劑燃煤電廠
外文關鍵詞:task-specific ionic liquids (TSILs)CO2 captureFlue Gas of Coal-fired Power Plants
相關次數:
  • 被引用被引用:0
  • 點閱點閱:828
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
由於科技的快速發展使得二氧化碳的排放量逐年增加造成全球的暖化,這個情況受到了全球重視。其中又以燃煤電廠為二氧化碳最大排放源,因此捕獲(capture)與隔離(separation)由燃煤電廠(固定源)所產生的大量二氧化碳是非常急迫的。初步的分析指出,捕獲每噸來自固定源的二氧化碳成本必須少於10元美金才符合經濟效益,所以,發展具經濟可行性的分離與捕獲二氧化碳技術被認為是迫切急需的課題。
近年來,一些隔離技術都被用於二氧化碳的捕獲/隔離上,如吸附、薄膜和低溫分離等。與傳統商業上捕獲/隔離二氧化碳所利用化學吸收劑(單乙醇胺、雙乙醇胺和甲基雙乙醇胺等)相比,吸附法具低能源消耗、低廉的成本以及可以在相當廣的溫度壓力範圍下應用等優勢。目前如沸石、pillared claysc和hydrotalcite等吸附劑以被發現擁有相當高捕獲二氧化碳的潛力。此外,Sayari等學者利用接上雙乙醇胺的擴孔洞MCM-41材料,得到高二氧化碳吸附量(104 mg/g)和疏水吸附劑,其原理為將胺根嫁接到矽材或碳中孔洞材料上,使吸附效能大幅提升。
目前相當多學者研究利用離子液體(ionic liquids)作為二氧化碳的吸收劑,因為離子液體有不易燃、不揮發、可回收再利用及熱穩定溫度範圍大和化學穩定性高等優點,在捕獲二氧化碳上也擁有相當高的潛力。
本研究中,先自行合成出(3-Aminopropyl)tributylphosphonium aminoethanoic acid salt ([aP4443][Gly])、(3-Aminopropyl)tributylphosphonium l-a-diaminocaproic acid salt ([aP4443] [Lys])與(3-Aminopropyl)tributylphosphonium l-a-amino-5- guanidinovaleric acidsalt ([aP4443] [Arg]),這3個含胺基的功能性離子液體,經熱重分析儀(TGA)在75℃一大氣壓下通入15%的乾二氧化碳進行二氧化碳吸收,實驗結果發現二氧化碳的吸收效能遠低於商業化標準(2 mmol/g)。
為了進一步提升吸附效能,因此將3個離子液體各別與氧化矽分子篩MSF以不同量製備出固體吸附劑。製備出之吸附劑都經由粉末X-光繞射、氮氣等溫吸附/脫附、傅立葉紅外線吸收光譜以及元素分析等對其物化特性詳細鑑定。接著,經二氧化碳吸附測試後,發現其吸附效能雖有提升但尚無法達到足以商業化的標準。最後,更進一步將離子液體與醇胺類液體吸收劑Pentaethylenehexamine(PEHA)、Tetraethylenepentamine(TEPA)以不同比例進行混摻,再與矽材MSF製備出複合式固體吸附劑,經二氧化碳吸附效能測試發現其吸附效能大幅提升至商業化標準。且各系列樣品中吸附效能最好之樣品,進行了廢氣中水蒸氣對吸附劑的影響,模擬了水氣含量為2.5%以及10.6%。其結果顯示水氣進入會使對二氧化碳的吸附效能略微下降。另外含有離子液體之樣品經過多次二氧化碳循環吸附後,吸附效能下降的幅度較小,且適當的添加醇胺類吸收劑不但有利於提升吸附效能,也能降低吸附劑的製造成本。
最後將上述吸附劑進行了吸附系統放大實驗,其結果顯示當系統放大時,吸附效能會稍微降低,且水氣的進入會些微提升吸附劑對二氧化碳的吸附效能。另外,SO2及NO這兩個發電廠煙道口中所存在的廢氣,會使吸附劑吸附效能下降。最後模擬煙道口所排放出的氣體,進行多次二氧化碳循環吸附,發現了當吸附劑中含有離子液體時,吸附效能會較穩定,且效能的衰退會較慢。由以上結果,更進一步證明商業化的可能性。
Global warming, which is an important and challenging issue, has caused by progressive increase of CO2 in the atmosphere due to the rapid development of science and technology. Among them, coal-fired power plants are one of the largest sources of CO2 emission. Therefore, the capture/separation of CO2, particularly those produced from coal-burning power plants, is a demanding task. Preliminary analysis has suggested that an economically feasible approach for CO2 capture from a stationary source should further cost-dowm to less than US$10. Thus, R&D for cost-effective and stable separation and capture of CO2 remains one of the most crucial tasks in carbon sequestration.
Conventionally, majority of the commercial CO2 capture processes utilize technologies based on chemical absorption by alkanolamine solvents, such as monoethanolamine (MEA), diethanolamine (DEA), and methyldiethanolamine (MDEA) and so on. However, such liquid amine-based processes suffer from high energy consumption, solvent deterioration, and equipment corrosion problems. There are several new processes such as adsorption, membrane and cryogenic separation have been developed to tackle these problems, aiming at lowering the energy consumption and equipment cost, and more versatile operation conditions. Various solid adsorbents such as zeolites, pillared clays, and hydrotalcite are capable of capturing CO2. It is worthy to note that amine-functionalized mesoporous silicas (such as MCM-41), developed by Sayari et al., was found to achieve an impressive CO2 uptake of 104 mg/g.
Recently, a large amount of studies have been reoprted to use ionic liquids (ILs) as absorbents to capture carbon dioxide due to their unique properties, such as negligible vapor pressures, a broad range of liquid temperature, high thermal stabilities, excellent CO2 solubilies, and tunable properties. Therefore, the ILs has a promising potential to be utilized as sorbents in the near future.
In this study, three different task-specific ionic liquids (TSILs) including (3-Aminopropyl)tributylphosphonium aminoethanoic acid salt ([aP4443][Gly]), (3-Aminopropyl)tributylphosphonium l-a-diaminocaproic acid salt ([aP4443][Lys]) and (3-Aminopropyl)tributylphosphonium l-a-amino-5- guanidinovaleric acid salt ([aP4443][Arg]) have been synthesized and used as CO2 sorbents. Subsequently, CO2 uptake measurements of these TSILs at 348 K under ambient pressure using 15% CO2 show that absorption capacity is far below the commercial benchmark (2 mmol/g).
To further enhance the adsorption capacity, we developed a novel solid composite adsorbent by incorporating these TSILs into mesocellular silica foam (MSF). The amine-functionalized porous materials were characterized by a variety of different spectroscopic techniques, such N2 adsorption/desorption, Small Angle X-ray Scattering (SAXS), elemental analysis (EA) and Fourier-transformed infrared (FTIR). Experimentally, CO2 uptake measurements indicate that the adsorption capacities are still unable to achieve the criteria. Furthermore, adding different amounts of alkanolamine solvents such as Pentaethylenehexamine (PEHA) or Tetraethylenepentamine (TEPA) into the TSILs and incorporating to MSF was performed. CO2 adsorption performance has remarkably enhanced and surpassed the benchmark value for commercialization. In addition, tAdsorption capacities of the best sorbents in each series under the exposure to various humidities were carried out and found to be slightly effected by water vapor. Durability tests done by cyclic adsorption-desorption revealed that these adsorbents also possess enhanced stability compared to the traditional alkanolamine solvent incorporated sorbents.
For industrial implications, a fixed-bed column was used to study the scale-up effects including the influence of moisture, SO2 and NO. The results suggested that adsorption capacity is inhibited slightly by the presence of SO2 and NO. The durability of CO2 adsorption capacity is enhanced by the presence of TSILs after 10 cycles of adsorption/regeneration cycles under conditions of 15% CO2, 100 ppm SO2, 300 ppm NO, 10.6% water content and a temperature of 348 K.
中文摘要 I
Abstract IV
目錄 VI
圖目錄 XIV
表目錄 XXIV
第一章 緒 論 1
1.1 前言 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 溫室氣體相關議題之探討 4
2.1.1 何謂溫室效應 4
2.1.2 溫室氣體種類 6
2.2.3 溫室效應對生態的影響 8
2.1.4 二氧化碳捕獲的路徑及優缺點 10
2.2 孔洞分子篩之發展 18
2.3 中孔分子篩MSF 21
2.3.1 MSF簡介 21
2.3.2 MSF (Mesocelluar silica foams)合成機制 22
2.3.3 中孔洞分子篩之表面官能化介紹 23
2.4 離子液體之簡介與應用 25
2.4.1 何謂離子液體(Ionic Liquid, IL) 25
2.4.2 離子液體的起源 28
2.4.3 離子液體的性質 30
2.4.3.1 黏度 30
2.4.3.2 密度 31
2.4.3.3 熔點 31
2.4.3.4 溶解度及水溶性(親水性) 33
2.4.3.5 酸鹼性 35
2.4.3.6 導電度 35
2.4.4 離子液體之應用 36
2.4.4.1 萃取的應用 36
2.4.4.2 催化反應的應用 36
2.4.4.3 有機合成的應用 37
2.4.4.4 電化學的應用 37
2.4.4.5 其他方面應用 38
2.5 離子液體用於二氧化碳之捕獲與分離 38
2.5.1 離子液體用於二氧化碳捕獲與分離之優缺點 38
2.5.2 離子液體用於二氧化碳捕獲及分離的發展 39
2.5.3 各類離子液體用於二氧化碳捕獲與分離 42
2.5.3.1 室溫離子液體(RTILs)用於二氧化碳捕獲 42
2.5.3.2 功能化離子液體(TSILs)用於二氧化碳捕獲 47
2.5.3.3 附載離子液體薄膜(SILMs)用於二氧化碳捕獲 52
2.5.3.4 聚合性離子液體用於二氧化碳之捕獲 53
2.6 以固定床反應器進行吸附測試 55
第三章 實驗方法與步驟 59
3.1 化學樣品與試劑 59
3.2 實驗流程 60
3.2.1 MSF(mesocellular silica foam)的合成步驟 60
3.2.2 含胺基離子液體之合成步驟 62
3.2.3 物理含浸法修飾中孔洞矽材 64
3.2.4 二氧化碳吸附效能測試 66
3.2.5 CO2捕獲之程序設計及工程放大 68
3.3 樣品物化特性鑑定 70
3.3.1 小角度X光散射儀 (Small Angle X-ray Scattering,SAXS) 71
3.3.2 等溫氮氣吸附/脫附比表面積分析儀(Brunauer-Emmett-Teller Specific Surface Area Analyzer,BET) 71
3.3.3 傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared,FT-IR) 72
3.3.4 熱重分析(Termogravimetic Analysis;TGA) 73
3.3.5 元素分析(Elemental Analysis; EA) 74
3.3.6 高磁場液態核磁共振儀(Nuclear Magnetic Resonance;NMR) 74
3.3.7 氣相層析儀(Gas Chromatograph;GC) 75
第四章 結果與討論 76
4.1 P4G([aP4443][Gly])系列之樣品 76
4.1.1 P4G([aP4443][Gly])系列之樣品 76
4.1.1.1 樣品特性 76
4.1.1.2 二氧化碳吸附的效能 80
4.1.1.3 二氧化碳的捕捉動力 84
4.1.2 P4G([aP4443][Gly])摻雜PEHA(Pentaethylenehexamine)系列之樣品 87
4.1.2.1 樣品特性 87
4.1.2.2 二氧化碳吸附的效能 91
4.1.2.3 二氧化碳的捕捉動力 95
4.1.3 P4G([aP4443][Gly])摻雜TEPA(Tetraethylenepentamine)系列之樣品 98
4.1.3.1 樣品特性 98
4.1.3.2 二氧化碳吸附的效能 102
4.1.3.3 二氧化碳的吸附動力 106
4.2 P4L([aP4443][Lys])系列之樣品 109
4.2.1 P4L([aP4443][Lys])系列之樣品 109
4.2.1.1 樣品特性 109
4.2.1.2 二氧化碳吸附的效能 113
4.2.1.3 二氧化碳的捕捉動力 118
4.2.2 P4L([aP4443][Lys])摻雜PEHA(Pentaethylenehexamine)系列之樣品 121
4.2.2.1 樣品特性 121
4.2.2.2 二氧化碳吸附的效能 124
4.2.2.3 二氧化碳的捕捉動力 129
4.2.3 P4L([aP4443][Lys])摻雜TEPA(Tetraethylenepentamine)系列之樣品 132
4.2.3.1 樣品特性 132
4.2.3.2 二氧化碳吸附的效能 136
4.2.3.3 二氧化碳的捕捉動力 140
4.3 P4A([aP4443][Arg])系列之樣品 143
4.3.1 P4A([aP4443][Arg])系列之樣品 143
4.3.1.1 樣品特性 143
4.3.1.2 二氧化碳吸附的效能 147
4.3.1.3 二氧化碳的吸附動力 152
4.3.2 P4A([aP4443][Arg])摻雜PEHA(Pentaethylenehexamine)系列之樣品 155
4.3.2.1 樣品特性 155
4.3.2.2二氧化碳吸附的效能 158
4.3.2.3 二氧化碳的吸附動力 162
4.3.3 P4A([aP4443][Arg])摻雜TEPA(Tetraethylenepentamine)系列之樣品 165
4.3.3.1 樣品特性 165
4.3.3.2 二氧化碳吸附的效能 168
4.3.3.3 二氧化碳的吸附動力 172
4.4 綜合比較 175
4.4.1 P4G、P4L及P4A系列樣品之二氧化碳吸附效能與吸附動力的比較 175
4.4.1.1 二氧化碳吸附效能 175
4.4.1.2 二氧化碳吸附動力 182
4.4.2 P4G、P4L及P4A個別摻雜PEHA系列樣品之二氧化碳吸附效能與吸附動力的比較 187
4.4.2.1 二氧化碳的吸附效能 187
4.4.2.2 二氧化碳的吸附動力 193
4.4.3 P4G、P4L及P4A個別摻雜TEPA系列樣品之二氧化碳吸附效能與吸附動力的比較 195
4.4.3.1 二氧化碳的吸附效能 195
4.4.3.2 二氧化碳的吸附動力 200
4.4.4 P4G分別摻雜PEHA、TEPA系列樣品之二氧化碳吸附效能與吸附動力的比較 202
4.4.4.1 二氧化碳的吸附效能 202
4.4.4.2 二氧化碳的吸附動力 207
4.4.5 P4L分別摻雜PEHA、TEPA系列樣品之二氧化碳吸附效能與吸附動力的比較 209
4.4.5.1 二氧化碳的吸附效能 209
4.4.5.2 二氧化碳的吸附動力 213
4.4.6 P4A分別摻雜PEHA、TEPA系列樣品之二氧化碳吸附效能與吸附動力的比較 215
4.4.6.1 二氧化碳的吸附效能 215
4.4.6.2 二氧化碳的吸附動力 219
4.5 模擬煙道口廢氣之吸附系統放大實驗 221
第五章 結論 227
參考文獻 229
(1)J. D. Figueroa,T. Fout, S. Plasynski, H. Mcllvried, and R. D. Srivastava,Inter.J. Greenhouse Gontrol 2,2008,9
(2)http://content.edu.tw/senior/chemistry/tp_sc/surround/default.htm 化學與環保
(3)http://www.stone-club.com.tw/service.php 雨太多股份有限公司
(4)http://www.hko.gov.hk/wxinfo/climat/greenhs/c_grnhse.htm 香港天文台
(5)陳維新,能源概論,高立圖書有限公司,2006,9-36~9-37
(6)溫室效應對地球環境的影響 - 政大附中084專屬天地的部落格 - udn部落格
(7)徐恆文,工業技術研究院能源與環境研究所《科學發展》,413, 24,2007。
(8)經濟部能源科技研究計劃,氣化技術開發與淨媒技術開發,2008。
(9)O. Lawal, A. Bello, and R. Idem, “The Role of Methyl Diethanolamine (MDEA) in Preventing the Oxidative Degradation of CO2 Loaded and Concentrated Aqueous Monoethanolamine (MEA)−MDEA Blends during CO2 Absorption from Flue Gases”, Ind. Eng. Chem. Res., 2005, 44, 1874
(10)S. Schubert, M. Grunewald, and D. W. Agar, “Enhancement of carbon dioxide absorption into aqueous methyldiethanolamine using immobilised activators”,Chem. Eng. Sci., 2001, 56, 6211
(11)C. Alie, L. Backham, E. Croiset, and P.L. Douglas, “Simulation of CO2 capture using MEA scrubbing: a flowsheet decomposition method”, Energy Conver. Manag. 2005, 46, 475
(12)G. P. Knowles, J. V. Graham, S. W. Delaney, and A. L. Chaffee, “Aminopropyl-functionalized mesoporous silicas as CO2 adsorbents”, Fuel Proc. Tech. 2005, 86, 1435
(13)R. A. Khatri, S. S. C. Chuang, Y. Soong, and M. Gray, “Thermal and Chemical Stability of Regenerable Solid Amine Sorbent for CO2 Capture”, Energy & Fuels 2006,20, 1514
(14)Y. Sakamoto, K. Nagata, K. Yogo, and K. Yamada, “Preparation and CO2 separation properties of amine-modified mesoporous silica membranes”, Micropor. Mesopor. Mater. 2007, 101, 303.
(15)林佳璋、劉文宗,工業技術研究院化學工業研究所。
(16)H. G. Karge, “Comparative measurements on acidity of zeolites ”, Stud. Surf. Surf. Sci. Catal. 1991, 58, 531.
(17)M. Guisnet and P. Magnoux, “Coking and Deactivation of Zeolites Influence of the Pore Structure”, Appl.Catal. 1989, 54, 1.
(18)C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism”, Nature 1992, 359, 710.
(19)J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, D. Schmitt, T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins, and J .L. Schlenker, “A new family of mesoporous molecular sieves prepared with liquid crystal templates”, J. Am. Chem. Soc. 1992, 114, 10834.
(20)D. Zhao,Q. Huo, J. Feng, B. F. Chmelka and G. D. Stucky, “Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered,Hydrothermally Stable,Mesoporous Silica Structures” Science 120, 1998, 6024.
(21)F. Kleitz, S. H. Choi, and R. Ryoo, “ Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes ” Chem. Commun.2003,2136.
(22)T. W. Kim, F. Kleitz, B. Paul, and R. Ryoo, J. Am. “CM-48-like Large Mesoporous Silicas with Tailored Pore Structure: Facile Synthesis Domain in a Ternary Triblock Copolymer−Butanol−Water System” Chem. Soc. 127, 2005, 7601
(23)J. Lee, K. Sohn, and T. Hyeon, J. Am. Chem. Soc. 123, 2001, 5146.
(24)S. Boskovic, A. J. Hill,T. W. Turney, M. L. Gee, G. W. Stevens, and A. J. O’Connor, Prog. Solid State Chem. 34, 2006, 67
(25)R. Zuna, “Preparation and characterization of vinyl-functionalized mesoporous SBA-15 silica by a direct synthesis method”, Colloids Surf. 1997, 27, 123.
(26)C. Chen, H. Li, and M. E. Daris, “Studies on Mesoporous Materials I: Synthesis and Characterisation of MCM-41”, Microporous mater. 1993, 2, 17.
(27)A. Stein, B. J. Melde, and R. C. Schroden, “Formation of Ordered Silica-Organic Hybrids by Self-Assembly of Hydrolyzed Organoalkoxysilanes with Long Organic Chains”, Adv. Mater. 2000, 19, 12.
(28)Q. Wei, Z. Nie, Y. Hao, Z. Chen, and J. Zou, Wei Wang, “Direct synthesis of thiol-ligands-functionalized SBA-15: Effect of 3-mercaptopropyltrimethoxysilane concentration on pore structure”, Materials Lett. 2005, 59, 3611.
(29)劉沂欣,碩士論文,國立台灣大學化學研究所; “孔洞材料修飾:有機矽烷化、官能基酯化非矽金屬氧化物嫁接二氧化矽表面”,2001
(30)《科學時報》,國際合作推動離子液體工業化進程——專訪美國總統綠色化學挑戰獎獲得者Robin D. Rogers教授
(31)Wilkes, J. S., Levisky, J. A., Wilson, R. A.; and Hussey, C. L., “Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis”, J. Inorg. Chem., 21: 1263–1264(1982).
(32)K. R. Seddon, A. Stark, M.-J. Torres, “Influence of chloride, water, and organic solvents on the physical properties of ionic liquids” Pure Appl. Chem., 2000, 72, 2275.
(33)P. T. Anastas, J. B. Zimmerman, “Peer Reviewed: Applying the Principles of Green Engineering to Cradle-to-Cradle Design”Environ. Sci. Technol., 2003, 37, 94A
(34)P. Walden, “Molecular weights and electrical conductivity of several fused salts” Bull. Acad. Imper. Sci. (St. Petersburg), 1800, 1914
(35)F. H. Hurley, T. P. Wier, “Electrodeposition of Metals from Fused Quaternary Ammonium Salts”, J. Electrochem. Soc., 98, 203, 1951
(36)H. L. Chum, V. R. Koch, L. L. Miller, R. A. Osteryong,“Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt” J. Am Chem.Soc., 97, 3264, 1975
(37)J. S. Wilkes, M. J. Zaworotko, J. “Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids” Chem Soc. Chem. Commun., 965,1992
(38)A. M. Leone, S. C. Weatherly, M. E. Williams, H. H. Thorp, R. W. Murray, “An Ionic Liquid Form of DNA: Redox-Active Molten Salts of Nucleic Acids”, J. Am. Chem. Soc., 2001, 123, 218.
(39)M. Yoshizawa, A. Narita, H.Ohno, “Design of Ionic Liquids for Electrochemical Applications”,Aust. J. Chem. 2004, 57, 139.
(40)S. Hayashi, H. Hamaguchi, “Discovery of a Magnetic Ionic Liquid [bmim]FeCl4”,Chem. Lett., 2004, 33, 1590
(41)K. Fukumoto, M. Yoshizawa, H. Ohno, “Room Temperature Ionic Liquids from 20 Natural Amino Acids”,J. Am. Chem. Soc., 2005, 127, 2398.
(42)J. K. Lee, M. J. Kim, “Ionic liquid-coated enzyme for biocatalysis in organic solvent”, J. Org. Chem. 2002, 67(19), 6845-6847
(43)Y. Ishida, H. Miayuchi, and K. Sigo, “Design and synthesis of a novel imidazolium-based ionic liquid with planar chirality ”, J. Chem. Commun., 2002, 19, 2240–2241.
(44)J. S. Wilkes, “Properties of ionic liquid solvents for catalysis ”,J. Mol. Cata. A-Chem., 2004, 214, 11.
(45)P. Bonhôte, A.P. Dias, N. Papageogiou, K. Kalyanasundaram, and M. Grätzel, “Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts ”, Inorg. Chem., 1996, 35, 1168.
(46)A. B. McEwen, H. L. Ngo, K. Le Compte, and J. L. Goldman, “Electrochemical Properties of Imidazolium Salt Electrolytes for Electrochemical Capacitor Applications”, J. Electrochem. Soc.,1999, 146, 1687.
(47)H., Olivier-Bourbigou, L., Magna , “Ionic liquids: perspectives for organic and catalytic reactions”, J. Molec. Catal. A., 2002, 182(1), 419–437.
(48)H. L. Ngo, K. Lecompte, L. Hargens, A. B. Mcewen, “Thermal properties of imidazolium ionic liquids ”, Thermochimica Acta., 2000, 357, 97
(49)C.F. Poole , “Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids”, J. Chromatogr. A., 2004, 1037(1/2), 49–82.
(50)H. Olivier-Bourbigou, L. Magna, “Ionic liquids: perspectives for organic and catalytic reactions”, J. Molec. Catal. A., 2002, 182(1), 419–437
(51)D. S. Wong, J. P. Chen, J. M. Chang, et al., “Phase equilibria of water and ionic liquids [emim][PF6] and [bmim][PF6]” , Fluid Phase Equilib., 2002, 194–197, 1089–1095.
(52)Y. Chauvin, H. Olivier-Bourbigou, “Nonaqueous ionic liquids as reaction solvents” , CHEMTECH, 1995, 25, 26.
(53)S. Tait, R. A. Osteryoung, “Infrared study of ambient-temperature chloroaluminates as a function of melt acidity,” Inorg. Chem., 1984, 23, 4352–4360
(54)G. T. Wei, J. C. Chen, Z. Yang, “Studies on Liquid/liquid Extrac tion of Copper Ion with Room Temper a ture Ionic Liquid”, J. Chin. Chem. Soc., 2003, 50, 1123
(55)G. T. Wei, Z. Yang, C. J. Chen, “Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions”, Anal. Chim. Acta, 2003, 488, 183.
(56)A.E. Visser, R. P. Swatloski, R. D. Rogers, “Task-specific ionic liquids for the extraction of metal ions from aqueous solutions”, Green Chem. 2000, 2, 1.
(57)A.Weizbicki, J. H. Davis, R. W. Rogers, “Task-specific ionic liquids for the extraction of metal ions from aqueous solutions”, Chem. Commun. 2001, 135.
(58)M. Andre, J. Loidl, G. Laus, H. Schottenberger, G. Bentivoglio, K. Wurst, K. H. Ongania, “Ionic Liquids as Advantageous Solvents for Headspace Gas Chromatography of Compounds with Low Vapor Pressure ”, Anal. Chem., 2005, 77, 702.
(59)W. H. Lo, H. Y. Yang, G. T. Wei, “One-pot desulfurization of light oils by chemical oxidation and solvent extraction with room temperature ionic liquids ”,Green Chemistry, 2003, 5, 639.
(60)G. T. Wei, Z. Yang, C. Y. Lee, H. Y. Yang, C. R. C. Wang , “Aqueous−Organic Phase Transfer of Gold Nanoparticles and Gold Nanorods Using an Ionic Liquid ”, J. Am. Chem. Soc., 2004, 126, 5036
(61)L. A. Blanchard , D. Hancu, E.J. Beckman, et al. “Green Processing Using Ionic Liquid and CO2”, Nature, 1999, 399,28−29
(62)J.A. Boon, J.A. Levisky, J.L. Pflug, J.S. Wilkes , “Friedel-Crafts reactions in ambient-temperature molten salts ”, J. Org. Chem. 1986, 51, 480.
(63)S. Park, R. J Kazlauaks, “Biocatalysis in ionic liquids – advantages beyond green technology ”,Curr. Opin. Biotecnol., 2003, 14, 432.
(64)T. Welton, “Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis ”, Chem. Rev., 1999, 99, 2071
(65)P. Wasserscheid, A. Bosmann, C. Bolm, “ Synthesis and properties of ionic liquids derived from the ‘chiral pool’ ”,Chem. Commun., 2002, 200
(66)Y. Ishida, H. Miyauchi, K. Saigo, “Design and synthesis of a novel imidazolium-based ionic liquid with planar chirality ”, Chem. Commun., 2002, 2240.
(67)D. R. MacFarlane, J. Huang, M. Forsyth, “Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries ”, Nature, 1999, 402, 792
(68)M. Doyle, S. K. Choi, G. Proulx, “High-temperature proton conducting membranes based on perfluorinated ionomer membrane-ionic liquid composites ”, J. Electrochem. Soc. 2000, 147, 34
(69)W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida, “Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator ”, Chem. Commun., 2002, 374.
(70)T. J. Boyle, D. Ingersoll, M, A. Rodriguez, C. J. Tafoya, D. H. Doughty, “Electrochemical Properties of Imidazolium Salt Electrolytes for Electrochemical Capacitor Applications ”,J. Electrochem. Soc., 1999, 146, 1687.
(71)M. C. Buzzeo, C. Hardacre, R. G. Compton, “Use of Room Temperature Ionic Liquids in Gas Sensor Design ”, Anal. Chem.2004, 76, 4583
(72)C. Cadena, J. L. Anthony, J. K. Shah, T. I. Morrow, J. F. Brennecke,E. J. Maginn, “Why Is CO2 So Soluble in Imidazolium-Based Ionic Liquids? ”, J. Am. Chem. Soc. 2004, 126, 5300.
(73)L. A. Blanchard,D. Hancu,E. J .Beckman,et al., “Green processing using ionic liquids and CO2 ”, Nuture, 1999, 399, 28
(74)J. L. Anthony, J. L. Anderson, E. J. Maginn, “Anion effects on gas solubility in ionic liquids”, J. Phys. Chem. B, 2005, 109, 6366
(75)E. D. Bates, R. D. Mayton, I. Ntai, “CO2 Capture by a Task-Specific Ionic Liquid ”, J. Am. Chem. Soc., 2002, 124, 926
(76)L. A. Blanchard, Z. Gu, J. F. Brennecke, “High-Pressure Phase Behavior of Ionic Liquid/CO2 Systems ”, J. Phys. Chem. B 2001, 105, 2437
(77)X. C. Zhang, Z. P. Liu, W. C. Wamg, “Screening of ionic liquids to capture CO2 by COSMO-RS and experiments ”, AIChE J., 2008,54,2717
(78)X. C. Zhang, F. Huo, Z. P. Liu, et al, “Absorption of CO2 in the Ionic Liquid 1-n-Hexyl-3-methylimidazolium Tris(pentafluoroethyl)trifluorophosphate ([hmim][FEP]): A Molecular View by Computer Simulations ”, J. Phys. Chem. B, 2009, 113, 7591
(79)S. J. Zhang, Y. H. Chen, F. W. Li, et al. “Fixation and conversion of CO2 using ionic liquids ”, Catal. Today, 2006, 115, 61
(80)S. J. Zhang, X. L. Chen, Y. H. Chen, et al. “Solubilities of CO2 in 1-Butyl-3-methylimidazolium Hexafluorophosphate and 1,1,3,3-Tetramethylguanidium Lactate at Elevated Pressures ”, J. Chem. Eng. Data, 2005, 50,1582
(81)Y. H. Chen, S. J. Zhang, X. L. Yuan, “Solubility of CO2 in imidazolium-based tetrafluoroborate ionic liquids ”, Thermochimica Acta, 2006, 441,42
(82)J. M. Zhang, S. J. Zhang, K. Dong, et al. “Supported Absorption of CO2 by Tetrabutylphosponium Amino Acid Ionic Liquids ”,Chem. Eur. J.,2006, 12, 4021
(83)S. J. Zhang, Y.H. Chen, X. F. Ren, et al. “Solubility of CO2 in Sulfonate Ionic Liquids at High Pressure ”, J. Chem. Eng. Data,2005,50,203
(84)Y. Q. Zhang, S. J. Zhang, X.M. Lu, et al. “Dual Amino-Functionalised Phosphonium Ionic Liquids for CO2 Captur”, Eur. J., 2009, 15,3003
(85)D. Camper, J. E. Bara, D. L. Gin, et al. “Room-Temperature Ionic Liquid−Amine Solutions: Tunable Solvents for Efficient and Reversible Capture of CO2 ”, Ind. Eng. Chem. Res., 2008, 47, 8496
(86)Y. S. Zhao, X. P. Zhang, S. J.Zeng,et al. “Density, Viscosity, and Performances of Carbon Dioxide Capture in 16 Absorbents of Amine + Ionic Liquid + H2O, Ionic Liquid + H2O, and Amine + H2O Systems ”, J. Chem. Eng. Data 2010, 55, 3513
(87)A.P-S. Kamps, D. Tuma, J. Xia, G. Maurer, Solubility of CO2 in the ionic liquid [bmim][PF6], J. Chem. Eng. Data 48 (2003) 746–749.
(88)J.L. Anthony, E.J. Maginn, J.F. Brennecke, Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate, J. Phys. Chem. B 106 (2002) 7315–7320.
(89)C. Cadena, J. L. Anthony, J. K. Shah, T. I. Morrow, J. F. Brennecke,E. J. Maginn, J. Am. Chem. Soc. 2004, 126, 5300. doi:10.1021/JA039615X
(90)X. Huang, C. J. Margulis,Y. Li, B. J. Berne, J. Am. Chem. Soc. 2005,127, 17842. doi:10.1021/JA055315Z
(91)E.-K. Shin, B.-C. Lee, High-pressure phase behavior of carbon dioxide with ionic liquids: 1-alkyl-3-methylimidazolium trifluoromethanesulfonate, J. Chem. Eng. Data 53 (2008) 2728–2734.
(92)J. Palgunadi, J.E. Kang, D.Q. Nguyen, J.H. Kim, B.K. Min, S.D. Lee, H. Kim, H.S. Kim, Solubility of CO2 in dialkylimidazolium dialkylphosphate ionic liquids, Thermochim. Acta 494 (2009) 94–98
(93)E.-K. Shin, B.-C. Lee, J.S. Limb, High-pressure solubilities of carbon dioxide in ionic liquids: 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, J. Supercrit. Fluids 45 (2008) 282–292.
(94)R.E. Baltus, B.H. Culbertson, S. Dai, H. Luo, D.W. DePaoli, Low-pressure solubility of carbon dioxide in room-temperature ionic liquids measured with a quartz crystal microbalance, J. Phys. Chem. B 108 (2004) 721–727.
(95)Y. Hou, R.E. Baltus, Experimental measurement of the solubility and diffusivity of CO2 in room-temperature ionic liquids using a transient thin-liquid-film method, Ind. Eng. Chem. Res. 46 (2007) 8166–8175.
(96)A.M. Schilderman, S. Raeissi, C.J. Peters, Solubility of carbon dioxide in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, Fluid Phase Equilib. 260 (2007) 19–22.
(97)A. Yokozeki, M.B. Shiflett, Hydrogen purification using room-temperature ionic liquids, Appl. Energy 84 (2007) 351–361.
(98)A.N. Soriano, B.T. Doma Jr., M.-H. Li, Solubility of carbon dioxide in 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethylsulfate, J. Chem. Thermodyn.40 (2008) 1654–1660.
(99)A.N. Soriano, B.T. Doma Jr., M.-H. Li, Carbon dioxide solubility in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, J. Chem. Thermodyn. 41 (2009)525–529.
(100)Y.J. Heintz, L. Sehabiague, B.I. Morsi, K.L. Jones, D.R. Luebke, H.W. Pennline, Hydrogen sulfide and carbon dioxide removal from dry fuel gas streams using an ionic liquid as a physical solvent, Energy Fuels 23 (2009) 4822–4830.
(101)M. Shokouhi, M. Adibi, A.H. Jalili, M. Hosseini-Jenab, A. Mehdizadeh, Solubility and diffusion of H2S and CO2 in the ionic liquid 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate, J. Chem. Eng. Data, in press,doi:10.1021/je900716q.
(102)L.M.G. Sanchez, G.W. Meindersma, A.B. de Haan, Solvent properties of functionalized ionic liquids for CO2 absorption, Chem. Eng. Res. Des. 85 (A1) (2007) 31–39.
(103)S.P.M. Ventura, J. Pauly, J.L. Daridon, J.A.L. da Silva, I.M. Marrucho, A.M.A. Dias, J.A.P. Coutinho, High pressure solubility data of carbon dioxide in (tri-isobutyl(methyl)phosphonium tosylate +water) systems, J. Chem. Thermodyn. 40(2008) 1187–1192.
(104)X. Li, M. Hou, Z. Zhang, B. Han, G. Yang, X. Wang, L. Zou, Absorption of CO2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters, Green Chem. 10 (2008) 879–884.
(105)P.J. Carvalho, V.H. Alvarez, B. Schroder, A.M. Gil, I.M. Marrucho, M. Aznar, L.M.N.B.F. Santos, J.A.P. Coutinho, Specific solvation interactions of CO2 on acetate and trifluoroacetate imidazolium based ionic liquids at high pressures, J. Phys. Chem. B 113 (2009) 6803–6812.
(106)P.J. Carvalho, V.H. Alvarez, I.M. Marrucho, M. Aznar, J.A.P. Coutinho, High pressure phase behavior of carbon dioxide in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-butyl-3-methylimidazolium dicyanamide ionic liquids, J. Supercrit. Fluids 50 (2009) 105–111.
(107)E.D. Bates, R.D. Mayton, I. Ntai, J.H. Davis Jr., CO2 capture by a task-specific ionic liquid, J. Am. Chem. Soc. 124 (2002) 926–927.
(108)J.H. Davis Jr., US20040035293A1 (2004).
(109)L.M.G. Sanchez, G.W. Meindersma, A.B. de Haan, Solvent properties of functionalized ionic liquids for CO2 absorption, Chem. Eng. Res. Des. 85 (A1) (2007) 31–39.
(110)K.-P. Shen, M.-H. Li, Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine, J. Chem. Eng. Data 37 (1992) 96–100.
(111)K.E. Gutowski, E.J. Maginn, Amine-functionalized task-specific ionic liquids: a mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation, J. Am. Chem. Soc. 130 (2008) 14690–14704.
(112)D. Chinn, D. Vu, M. S. Driver, L. C. Boudreau, US Patent 0 129 598 2005.
(113)R. Quinn, G. P. Pez, J. B. Appleby, US Patent 5 338 521 1994.
(114)M. D. Soutullo, C. I. Odom, B. F. Wicker, C. N. Henderson, A. C. Stenson, J. H. J. Davis, “ Reversible CO2 Capture by Unexpected Plastic-, Resin-, and Gel-like Ionic Soft Materials Discovered during the Combi-Click Generation of a TSIL Library ”,Chem. Mater. 2007, 19, 3581.doi:10.1021/CM0705690
(115)J. Zhang, S. Zhang, K. Dong,Y. Zhang,Y. Shen, X. Lv, Chem. Eur. J. 2006, 12, 4021. doi:10.1002/CHEM.200501015
(116)S. Zhang, Y. Chen, F. W. Li, X. Lu, W. Dai, R. Mori, Catal. Today 2006, 115, 61. doi:10.1016/J.CATTOD.2006.02.021
(117)R.E. Baltus, R.M. Counce, B.H. Culbertson, H. Luo, D.W. DePaoli, S. Dai, D.C. Duckworth, Examination of the potential of ionic liquids for gas separations, Sep. Sci. Technol. 40 (2005) 525–541.
(118)Y. Moriya, T. Sasaki, T. Yanase, US20070084344A1 (2007).
(119)S. Raeissi, C.J. Peters,Apotential ionic liquid forCO2-separating gas membranes:selection and gas solubility studies, Green Chem. 11 (2009) 185–192.
(120)S. Shishatskiya, J.R. Pauls, S.P. Nunes, K-V. Peinemann, Quaternary ammonium membrane materials for CO2 separation, J. Membr. Sci., in press,doi:10.1016/j.memsci.2009.09.006
(121)J.E. Bara, D.E. Camper, D.L. Gin, R.D. Noble, Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture, Acc. Chem. Res. 43 (2010) 152–159.
(122)J. Tang, H. Tang, W. Sun, M. Radosz, Y. Shen, Poly(ionic liquid)s as new materials for CO2 absorption, J. Polym. Sci. Polym. Chem. 43 (2005) 5477–5489..
(123)J.E. Bara, C.J. Gabriel, E.S. Hatakeyama, ImprovingCO2 selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents, J. Membr. Sci. 321 (2008) 3–7.
(124)J.E. Bara, E.S. Hatakeyama, D.L. Gin, R.D. Noble, Improving CO2 permeability in polymerized room-temperature ionic liquid gas separation membranes through the formation of a solid composite with a room-temperature ionic liquid, Polym. Adv. Technol. 19 (2008) 1415–1420.
(125)J.E. Bara, D.L. Gin, R.D. Noble, Effect of anion on gas separation performance of polymer-room-temperature ionic liquid composite membranes, Ind. Eng. Chem. Res. 47 (2008) 9919–9924.
(126)L. Yamin, Y. Qing, S. Mei, Carbon dioxide capture by functionalized solid amine sorbents with simulated flue gas conditions, Environ. Sci. Technol. 45(2011) 5710-5716.
(127)X. Yan, L. Zhang, Y. Zhang, Amine-Modified SBA-15: Effect of Pore Structure on the Performance for CO2 Capture, Ind. Eng. Chem. Res. 50(2011) 3220-3226
(128)L.Y. Lin, J.T. Kuo, H. Bai, Silica materials recovered from photonic industrial waste powder: Its extraction,modification, characterization and application, J. Hazard. Mater. 192(2011) 255-262
(129)孫逸民,儀器分析,全威圖書有限公司,1997。
(130)柯惠馨,碩士論文,私立中國文化大學材料科學與奈米科技研究所,金屬氧化物及奈米級中孔洞矽鋁分子篩固體酸觸媒之製備修飾與鑑定,2005。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top