(3.238.235.155) 您好!臺灣時間:2021/05/11 18:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:吳政毅
研究生(外文):Jeng-Yi Wu
論文名稱:以靜電紡絲製備油水分離膜之研究
論文名稱(外文):Studies on oil/water separation membranes via electrospinning
指導教授:蔡平賜蔡平賜引用關係
指導教授(外文):Ping-Szu Tsai
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:71
中文關鍵詞:靜電紡絲油水分離熱塑性聚氨酯矽烷改質二氧化矽
外文關鍵詞:ElectrospinningOil/water separationThermoplastic polyurethane (TPU)SilanizationSilica
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1803
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:71
  • 收藏至我的研究室書目清單書目收藏:0
本研究先以三種不同清潔奈米粒子的方式,探討粒子疏水改質的效果,並獲得高疏水改質的奈米粒子。實驗結果顯示:以300℃鍛燒和乙醇洗淨粒子的方式皆無法獲得良好的矽烷疏水改質效果;而用鹽酸洗淨法,可獲得高疏水改質的奈米粒子。
接著探討於不同濃度與收集時間之靜電紡絲熱塑性聚氨酯(Thermoplastic Polyurethane, TPU) 薄膜及組裝疏水奈米粒子後之疏水性及親油性的效果。實驗結果顯示較高的TPU濃度所獲得的TPU纖維膜,其疏水性會提高,而親油性會降低;而隨增加收集時間所獲得的TPU纖維膜,其疏水性維持不變(水滴靜態接觸角123.5°~126.6°),而親油性會提升;於TPU纖維膜組裝疏水奈米粒子後,薄膜的超疏水特性及親油特性皆大幅的提升;此TPU/疏水奈米粒子纖維膜可有效率的分離油水混合溶液。
The hydrophobic silica nanoparticles were fabricated and discussed by three kinds of nanoparticles pre-cleaning process. The experimental results showed that both ethanol cleaning and calcinations of 300oC could not achieve silica nanoparticles with hydrophobic property after silnation of alkyl-silane. However, the hydrophobic silica nanoparticles were successfully fabricated by pre-treating of hydrochloric acid.
Then the hydrophobic and oleophilic properties of the collected electrospinning Thermoplastic Polyurethane (TPU) thin films were discussed at different TPU concentrations, electrospinning collected times and assembly of hydrophobic silica nanoparticles. The experimental data showed that higher concentration of the TPU resulted in electrospinning TPU thin films with higher hydrophobic property and the lower oleophilic property; however, increasing electrospinning collected times resulted in almost the same hydrophobic properties (water contact angle of 123.5 ° to 126.6 °) and increasing leophilic property. After assembly of hydrophobic silica nanoparticles on the electrospinning TPU thin films, the superhydrophobic property and oleophilic property were significantly enhanced. The electrospinning TPU/hydrophobic nanopartices thin films promised to achieve high performace of oil/water separation efficiency.
目錄
第一章 緒論 1
1.1 前言 1
1.2 研究目的與動機 3
第二章 文獻回顧 5
2.1 靜電紡絲 5
2.1.1 靜電紡絲的發展史 6
2.1.2 靜電紡絲奈米纖維簡述 7
2.2 靜電紡絲製備奈米纖維主要影響因素 8
2.2.1 溶液參數 8
2.2.2 過程參數 12
2.2.3 環境參數 16
2.3 超疏水自潔表面-蓮花效應 17
2.3.1 超疏水理論 19
2.3.2 接觸角遲滯現象 20
2.3.3 楊氏(Yang)方程式 21
2.3.4 溫佐(Wenzel)方程式 22
2.3.5 卡西-巴斯特(Cassie and Baxter)方程式 24
2.4 油水分離膜 24
2.5 二氧化矽粒子的表面改質 27
第三章 實驗 30
3.1 實驗藥品 30
3.2 儀器設備及裝置 31
3.2.1 靜電紡絲機台 31
3.2.2 超音波震盪器 31
3.2.3 可程式化高溫爐 32
3.2.4 接觸角測量儀 33
3.2.5 傅立葉轉換紅外線光譜儀 34
3.2.6 奈米粒徑分析儀 35
3.3 實驗方法 36
3.3.1 奈米二氧化矽的清潔 36
3.3.2 奈米二氧化矽疏水改質 37
3.3.3 靜電紡絲TPU-95A薄膜 38
3.3.4 油水分離膜的製備 39
第四章 結果與討論 41
4.1 二氧化矽奈米粒子的改質 41
4.1.1 粒子粒徑分佈之鑑定 41
4.1.2 粒子官能基的鑑定 43
4.1.3 粒子疏水之測試 44
4.2 靜電紡絲TPU纖維膜 45
4.2.1 纖維膜的表面結構 45
4.2.2 TPU纖維膜表面的潤濕性 51
4.3 油水分離膜 55
4.3.1 油水分離膜的表面結構 55
油水分離膜表面的潤濕性 60
4.3.2 油水分離膜分離油水混合物測試 62
第五章 結論與建議 63
5.1 結論 63
5.2 建議 65
參考文獻 66
自述……………………………..………………………………………71

圖目錄
圖 2- 1 靜電紡絲裝置圖 5
圖 2- 2靜電噴霧現象示意圖。(a)當電場排斥力(E)大於液體表面張力(γ)時,(b)液滴破裂成更小的液滴 6
圖 2- 3表面張力作用過程 9
圖 2- 4 不同溶液流速下靜電紡絲SEM圖A:20 µl/min B:75 µl/min 13
圖 2- 5 不同接收距離纖維形態圖(a) 2 cm,(b) 0.5 cm 16
圖 2- 6 PS/THF 纖維不同環境濕度下場發射SEM圖(a) 小於25%,(b)31-28 %,(c)40-45 %, (d)50-59 %,(e)60-72 % 17
圖 2- 7水滴在傾斜的粗糙表面及平坦表面運動示意圖。(a)水滴在平坦表面的運動方式為滑動,平坦表面的粒子或污染物僅僅被干擾而已,未被水滴帶走。(b)水滴在粗糙表面的運動方式為滾動,粗糙表面的粒子或污染物會被水滴滾動帶走 19
圖 2- 8三種表面上液滴狀態的比較圖 21
圖 2- 9液滴在不同理想粗糙度的疏水表面狀態。 (a)平坦固體表面(b)非複合(noncomposited)固體表面 (c)複合(composited)固體表面 23
圖 2- 10 (a)噴塗上PTFE的不鏽鋼網 (b)塗層表面具有微米級的(I)球和(II)塊狀結構(c)和(d)更高放大倍率的球與塊狀結構表面型態,可以看到有奈米級的結構(e)水滴的靜態接觸角為156.2 ± 2.88°與4°的滑動角 (f)柴油滴在塗層表面的擴散和穿透行為(240 ms) 25
圖 2- 11 (a)不鏽鋼網的放大圖(b)、 (c)和(d)鍍上二氧化矽的不鏽鋼網不同放大倍率圖 (e) 5 μL的煤油於薄膜上擴散 26
圖 2- 12 (a)和(b)TPU纖維SEM圖,5μL水滴在薄膜上的接觸角 27
圖 2- 13 (a)經過疏水改質二氧化矽奈米粒子修飾之靜電紡絲TPU薄膜(b)油酸與染色過的水混合物(c)油水分離膜分離油水混合物 27
圖 2- 14矽烷表面改質反應機制示意圖 29
圖 3- 1自行組裝靜電紡絲設備 31
圖 3- 2超音波震盪器 32
圖 3- 3 可程式化高溫爐 33
圖 3- 4接觸角量測儀 34
圖 3- 5 奈米二氧化矽清潔流程圖 37
圖 3- 6 奈米二氧化矽疏水改質流程圖 38
圖 3- 7 製備油水分離膜流程圖 40
圖4- 1二氧化矽酸化反應式 42
圖4- 2不同奈米粒子 (a)二氧化矽(Silica)、(b)300℃鍛燒後改質的粒子(M-300℃) 、(c)乙醇洗淨後改質的粒子(M-ethanol)、(d)鹽酸洗淨後改質的粒子(M-HCl)之FTIR圖 43
圖4- 3奈米粒子疏水測試圖,(a)二氧化矽(Silica)、(b)300℃鍛燒後改質的粒子(M-300℃) 、(c)乙醇洗淨後改質的粒子(M-ethanol)、(d)鹽酸洗淨後改質的粒子(M-HCl) 44
圖4- 4 (a)5 wt% 與(b)8 wt% TPU纖維膜表面結構圖 46
圖4- 5靜電紡絲5 wt% TPU纖維膜POM圖,收集時間(a) 1 min (b) 3 min (c) 5 min (d) 7 min (e) 9 min,與靜電紡絲8 wt% TPU纖維膜POM圖,收集時間(f) 1 min (g) 3 min (h) 5 min (i) 7 min (j) 9 min 48
圖4- 6靜電紡絲5 wt% TPU纖維膜SEM圖,收集時間(a) 1 min (b) 3 min (c) 5 min (d) 7 min (e) 9 min,與靜電紡絲8 wt% TPU纖維膜POM圖,收集時間(f) 1 min (g) 3 min (h) 5 min (i) 7 min (j) 9 min 50
圖4- 7正十四烷於TPU纖維膜上到達0°所需時間圖 54
圖4- 8 5 wt% 油水分離膜POM圖,靜電紡絲收集時間(a) 1 min (b) 3 min (c) 5 min (d) 7 min (e) 9 min,與8 wt% 油水分離膜POM圖,靜電紡絲收集時間(f) 1 min (g) 3 min (h) 5 min (i) 7 min (j) 9 min 57
圖4- 9 5 wt% 油水分離膜SEM圖,靜電紡絲收集時間(a) 1 min (b) 3 min (c) 5 min (d) 7 min (e) 9 min,與8 wt% 油水分離膜POM圖,靜電紡絲收集時間(f) 1 min (g) 3 min (h) 5 min (i) 7 min (j) 9 min 59
圖4- 10 油水分離膜表面潤濕性(a)水滴接觸角為 158.6° (b)正十四烷接觸角為 0° 61
圖4- 11 正十四烷於油水分離膜上到達0°所需時間圖 61
圖4- 12 油水分離膜分離油水混合物 62

表目錄
表4- 1 不同奈米粒子改質前後平均聚集粒徑 42
表4- 2 TPU與疏水改質粒子平板基材表面接觸角 53
表4- 3 5 wt% TPU薄膜靜態接觸角 53
表4- 4 8 wt% TPU薄膜靜態接觸角 53
[1].Ahmed A. F., Abroad J., Basma Y., “ Assessment of alternative management techniques of tank bottom petroleum sludge in Oman”, Journal of Hazardous Materials, vol. 141, pp.557-564, 2007
[2].Machln R. C., Okoh A. I., Morales D., “Slurry-phase biodegradation of weathered oily sludge waste”, Chemosphere, vol. 70, pp.737-744, 2008
[3].Chen G. H., He G. H., “Separation of water and oil from water—in—oil emulsion by freeze/thaw method”, Separation and Purification Technology, vol. 31, pp. 83-89, 2003
[4].Poulopoulos S. G., Voutsas E. C., Grigoropouloun P., “Stripping as a pretreatment process of industrial oily wastewater”, Journal of Hazardous Materials, vol. 117, pp. 135-139, 2005
[5].侯士兵, 玄雪梅, 賈金平, “含油廢水處理技術的研究與應用現狀”, 上海化工, vol.9, pp.11-14, 2003
[6].李波, 周世俊, “含油污水處理技術”, 遼寧化工, vol. 36, pp.56-59, 2007
[7].Jiang, L., Feng, L., Zhang, Z., Mai, Z., Ma, Y., Liu, B., Zhu, D., “A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for the Separation of Oil and Water”, Angewandte Chemie International Edition, vol.43, pp.2012 -2014, 2004
[8].Jiang, L., Feng, L., Zhang, Z.,Mai, Z., Ma, Y.,Liu, B., Zhu, D., “A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for the Separation of Oil and Water”, vol.43, pp.2012-2014, 2004
[9].Yang, H., Zhang, X., Cai, Z. Q., Pi, P., Zheng, D., Wen, X., Cheng, J. and Yang, Z. R., “Functional silica film on stainless steel mesh with tunable wettability”, Surface & Coatings Technology, vol.22, pp,5387–5393, 2011
[10].Wang, L., Yang, S., Wang, J., Wang, C., Chen, L., “Fabrication of superhydrophobic TPU film for oil–water separation based on electrospinning route”, Materials Letters, vol.65, pp.869-872 , 2011
[11].Formalas A.,“ Process and apparatus for preparing artificial threads”, US patent, 1975504, 1934
[12].Reneker D, H., Chun L.,“Nanomea'e diametor fibres of polymer, produced by eleetrospinning”, Nanotechnology, vol.7, pp.216-223, 1996
[13].Deam, J. R. and Maddox R. N., “Interfacial Tension IN Hydrocarbon Systens”, Journal of chemical and engineering data, vol.15, pp. 216-222, 1970
[14].徐松秀, “靜電紡絲納米纖維的研究” , 碩士論文,北京化工大學, 2011
[15].Morozov, V. N. and Morozova B., “Atomic force microscopy of structures produced by electrospraying solution”, International journal of mass spectrometry, vol.178, pp.143-159 , 1998
[16].Shummer , P. and Tebel, K. H., “A New Elongational Rheometer For Polymer Solution”, Non-Newton Fluid, vol.12, pp.331-347., 1983
[17].Fong, H. and Reneker, D. H., “Elastomeric nanofiber of styrene-butadinene-styrene triblock copolymer”, Joumal of Polymer Science Part A Polymer Physics, vol.37, pp.3488-3493, 1999
[18].Zeng, J., Xu., Chen, “Biodegradable electrospum fibers for drug delivery”, Journal of Controlled Release, vol.92, pp.227-231, 2003
[19].Wannatong, L., Sirivat, G., “Effects of solvent on electrospun polymeric fibers:preliminary on polystyrene“, Polymer International, vol.53, pp.1851-1859, 2004
[20].Buchko C. J. and Chen L. C., “Processing and microstructural characterization of porous biocompatible protein polymer thin films”, Polymer, vol.40, pp.7397-7407, 2005
[21].Shenoy, S. L. and Bates, A., “Role of chain entanglements on fibers formation during electrospinning of polymer solution: good solvent, non-specific polymer interaction limit”, Polymer, vol.46, pp.3372-3384, 2005
[22].Zheng, M. H., Zhang, Y. Z., Kotaki ,M., “A review on polymer nanofibers by electrospinning and their applications in nanocomposites”, Composites Science and Technology, vol.63, pp.2223-2253 , 2003
[23].Taylor, G., “Disintegration of Water Drops in an Electric Field”, Proceedings of the Royal Society A, vol.280, pp.383-397 , 1964
[24].Zhao, S., Wu X., “Electrostatically generated fibers of ethyl-cyanoethyl cellulose”, Cellulose, vol.10, pp.405-409, 2003
[25].Casper C. L. and Stephens J. S., “Controlling Surface Morphology of Electrospun Polystyrene Fibers: Effect of Humidity and Molecular Weight in the Electrospinning Process”, Macromolecules, vol.37, pp.573-578, 2004
[26].Demir M. M. and Erman, “Electrospinning of polyurethane fibers”, Polymer, vol.43, pp.3303-3309, 2002
[27].Huang, Z. M., Zhang, Y. Z., Kotaki, M., “A review on polymer nanofibers by electrospinning and their applications in nanocomposites”, Composites Science and Technology, vol.63, pp.2223-2253, 2003
[28].Mo, X. M. and Xu, C. Y., “Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell”, Journal of proliferation Biomaterials, vol.25, pp.1883-1890 , 2004
[29].Deitzel J. M. and Harris D., “The effect of processing variables on the morphology of electrospun nanofibers and textiles”, Polymer, vol. 42, pp.261-272, 2001
[30].Teo, W. E. and Ramakrishna, S., “A review on electrospinning design and nanofibre assemblies”, Institute of physics publishing, vol.17, pp.R89-R106, 2006
[31].Feng, X., Jiang, L., “Design and Creation of Superwetting/Antiwetting Surfaces”, Advanced Masterials, vol.18, pp.3063-3078 , 2006
[32].Marmur, A., “The Lotus Effect: Superhydrophobicity and Metastability” , Langmuir, vol.20, pp.3517-3519, 2004.
[33].蔡平賜, “超疏水表面的階層式結構與自潔功能之研究,” 博士論文, 成功大學, 2008
[34].Furmidge C. G. L. , “Studies at phase interfaces The sliding of liquid drops on solid surfaces and a theory for spray retention,” Journal of Colloid Science, vol.17, pp.309-324, 1962
[35].Chen, W., Fadeev, A. Y., Hsieh, M. C., Oner, D., Young, J., McCarthy, T. J., “Ultrahydrophobic and Ultralyophobic Surfaces:  Some Comments and Examples” , Langmuir, vol.15, pp. 3395-3399, 1999
[36].Yoshimitsu Z., Nakajima A., Watanable T., “Effects of surface structure on the hydrophobicity and sliding behavior of water droplets”, Langmuir, vol.18, pp.5818-5822, 2002.
[37].Ramos S M M, Charlaix E, Benyagoub A. Contact angle hysteresis on nano-structured surfaces. Surface Science, vol.540, pp.355-362 , 2003
[38].Gao L. C., McCarthy T. J., “Contact angle hysteresis explained”, Langmuir, vol. 22, pp.6234-6237, 2006
[39].Oner,D. and Mcarthy,T.J., “Ultrahydrophobic Surfaces-Effects of Topography LengthScaleson Wettability” , Langmuir, vol.16, pp.7777-7782, 2000.
[40].Wenzel, R. N., “Resistance of Solid Surfaces to Wetting by Water” , Industrial & Engineering Chemistry Research, vol.28, pp.988-994, 1936.
[41].Tsai, P. S., Yang, Y. M., and Lee, Y. L., “Fabrication of Hydrophobic Surfaces by Coupling of Langmuir-Blodgett Deposition and a Self-Assembled Monolayer”, Langmuir, vol.22, pp.5660-5665, 2006
[42].Cassie, A.B.D., Baxter, S., “Wettability of porous surfaces,” Trans. Faraday Soc, vol.40, pp.546-551, 1944.
[43].Yang, H., Zhang, X., Cai, Z. Q., Pi, P., Zheng, D., Wen, X., Cheng, J., Yang, Z. R., “Functional silica film on stainless steel mesh with tunable wettability”, surface & Coatings Technology, vol.205, pp.5387-5393, 2011
[44].Wang, L., Yang, S., Wang, J., Wang, C., Chen, L., “Fabrication of superhydrophobic TPU film for oil–water separation based on electrospinning route”, materials letters, vol.65, pp.869-872, 2011
[45].Van, D. B., Robin, H. A., Schryver, F. C., Schoonheydt, R. A., “Langmuir-Blodgett deposition and optical diffraction of two-dimensional opal”, Journal of Materials Chemistry, vol.11, pp.3333-3340, 2001
[46].Iler, R. K., “The chemistry of silica”, Wiley, New York, pp.62 and pp.186, 1979
[47].杜仲慶 , “二氧化矽粒子LB膜的製備及其表面潤濕性的探討“ , 成功大學化學工程系碩士論文 , 2005
[48].Plueddeman, E. P., “Silane coupling agents”, Plenum Press: New York, 1991
[49].Vallant, T., Kattner, J., Brunner, H., Hoffmann, H., “Investigation of the formation and structure of self-assembled alkylsiloxane monolayers on silicon using in situ attenuated total reflection infrared spectroscopy”, Langmuir, vol.15, pp.5339-5346, 1999
[50].Chen, L. J., Tsai, Y. H., Liu, C. S., Chiou, D. R., Yeh, M. C., “Effect of water content in solvent on the critical temperature in the formation of self-assembled hexadecyltrichlorosilane monolayers on mica” Chemical Physics Letters 346 , 241, 2001
[51].Krasnoslobodtsev, A. V. and Smirnov, S. N., “Effect of water on silanization of silica by trimethoxysilanes”, Langmuir, vol.18, pp.3181-3184, 2002
[52].Jesionowski, T. and Krysztafkiewicz, A., “Influence of silane coupling agents on surface properties of precipitated silicas”, Applied Surface Science, vol.172, pp.18-32, 2001
[53].Mcgovern, M. E., Kallury, K. M. R. and Thompson, M., “Role of solvent on the silanization of glass with octadecyltrichlorosilane”, Langmuir, vol.10,pp. 3607-3614, 1994
[54].顏銓佑, “奈米二氧化矽之有機改質及其環氧樹脂應用,” 碩士論文, 中央大學, 200
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔