跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/29 23:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:阮燈可
研究生(外文):Dang-Kha Nguyen
論文名稱:計算流體動力學在鑄造過程中紊流流場,熱與相傳遞於熱穩定之影響分析
論文名稱(外文):Analysis the Effects of Turbulence Flow, the Heat, and PhasesTransfer on Thermal Arrest Time in Casting Process byComputational Fluid Dynamic Method
指導教授:黃世疇
指導教授(外文):Shyh-Chour Huang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:國際企業管理與製造產研碩外專班
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
畢業學年度:100
語文別:英文
中文關鍵詞:計算流體動力學
外文關鍵詞:Computational Fluid Dynamic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:283
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:1
The purpose of the thesis is to investigate the effects of turbulence flow, the
heat, and phases transfer on thermal arrest time in the casting process. In this study,
a computational fluid dynamic (CFD) package, Fluent, is used to investigate the
phenomena of pure Pb going through the two-dimensional rectangular cavity. The
simulation will describe the casting process by using volume of fluid (VOF) model
integration with the solidification model in Fluent.
The results of the simulation shown that the heat transfer is stable soon, the
time of thermal arrest is short; the heat transfer is very low, it will produce
imperfections in products; and a highly increasing in the heat alternation increases
the solidification time. The result also found that the turbulence flow will reduce
when the heat transfer is steady; the turbulence flow occurs strongly, the thermal
arrest time will take a more long time. Moreover, the effects of the phases transfer
on the thermal arrest time are almost seldom. Finally, both Vinlet= 0.15m/s and Tc=
500K are the most significant parameters for reducing the time of thermal arrest
and turbulence flow.
Abstract (Chinese) ........................................................................................ i
Abstract (English)........................................................................................ ii
Acknowledgments ................................................................................................ iii
Contents...................................................................................................... iv
Table List................................................................................................... vii
Figure List ................................................................................................ viii
Symbols List ............................................................................................... x
Chapter 1 Introduction............................................................................ 1
1.1 Introduction ............................................................................. 1
1.2 Outline of the Thesis................................................................ 3
Chapter 2 Literature Review .................................................................. 4
2.1 Investigate the examinations about casting process.................. 4
2.2 Methods used in previous studies............................................. 7
Chapter 3 Research Method................................................................. 12
3.1 Computational fluid dynamic (CFD) method. ........................ 13
3.1.1 Advantages of CFD ............................................................... 15
3.1.2 Applications of CFD.............................................................. 15
3.1.3 Limitations of CFD................................................................ 16
3.2 The basic equations of fluid flow in CFD .............................. 17
3.2.1 The Navier- Stocks equation. ................................................. 17
3.2.2 Turbulence flow..................................................................... 19
3.3 The discretization techniques in CFD .................................... 20
3.3.1 Finite difference method (FDM) ............................................ 21
3.3.2 Finite volume method (FVM) ................................................ 21
3.3.3 Finite element method (FEM) ................................................ 22
3.4 Computational flow model..................................................... 22
3.4.1 Multiphases flow ................................................................... 22
3.4.2 Volume of fluid method (VOF) ............................................. 23
3.4.3 Solidification model............................................................... 24
3.4.4 Turbulence model .................................................................. 25
Chapter 4 Numerical Methodology....................................................... 27
4.1 Material ................................................................................. 27
4.2 Problem description ............................................................... 29
4.3 The meshing model................................................................ 29
4.4 The models for simulation. .................................................... 32
4.4.1 Filling Process ....................................................................... 33
4.4.2 Phase change process............................................................. 34
4.4.3 Turbulence flow..................................................................... 35
4.5 Initial boundary conditions ................................................... 35
Chapter 5 Result and Discussion........................................................... 38
5.1 The effects of cooling temperature and inlet velocity on the heat
transfer in casting process....................................................... 39
5.1.1 Vinlet = 0.05m/s....................................................................... 39
5.1.2 Vinlet = 0.1m/s......................................................................... 42
5.1.3 Vinlet= 0.15m/s........................................................................ 45
5.2 The effects of turbulence flow on thermal arrest .................... 47
5.2.1 Vinlet= 0.05m/s........................................................................ 48
5.2.2 Vinlet = 0.1m/s........................................................................ 50
5.2.3 Vinlet = 0.15m/s....................................................................... 53
5.3 The effects of the phases change on the casting process......... 55
5.3.1 Vinlet= 0.05m/s........................................................................ 56
5.3.2 Vinlet = 0.1 m/s........................................................................ 58
5.3.3 Vinlet = 0.15 m/s...................................................................... 60
5.4 Estimation of simulation results............................................. 62
Chapter 6 Conclusion and Future Works ............................................ 65
6.1 Conclusions ........................................................................... 65
6.2 Future Works ......................................................................... 66
Reference.................................................................................................. 67
[1] IE337, “Casting and Solidification Process”, Materials and Manufacturing,
2010.
[2] Lee J., Mok .J, and HongC.P., “Straightforward numerical analysis of casting
process in a rectangular mould: from filling to solidification”,
International, Vol. 39(12), 1999, pp. 1252-1261.
[3] ShepelS.V. and PaolucciS., “ Numerical simulation of filling and
solidification of permanent mould casting”. Applied Thermal Engineering,
Vol. 22,2002, pp. 229-248.
[4] Ravindaran K. and Lewis R.W., “Finite element modeling of solidification
effects in mould filling”, Finite Element in Analysis and Design, Vol. 31,
1998, pp. 99-116.
[5] Pathak N. , Kumar A. , Yadav A. , and Dut t a P. , “ Ef fect s of
mould filling on evolution of the solid-liquid interface during the
solidification”, Applied Thermal Engineering, Vol. 29, 2009, pp.
3669-3678.
[6] Kulkarni M.S. and Babu A.S., “ Managing quality in continuous casting
process using products quality model and simulate annealing”, Journal of
Materials Processing Technology, Vol. 166, 2005, pp. 294-306.
[7] Shi Z. and Guo Z.X., “ Numerical heat transfer modeling for wire casting
process”, Material Science and Engineering, Vol. A365, 2004,
pp. 311-317.
[8] Bisler L. and Ravindran C.,“Characterizations of fold defects in AZ91D and
AE4 2 ma gn e s i um a l lo y pe rman ent mol d c a s t ing” , Ma t e r i a l s
Chacracterization, Vol. 61, 2010, pp. 296-304.
[9] Kuo J .H. , Hsu F.L. , and Hwan g W.S. , “Deve lopment of an
interactive simulation system for the determination of pressure time
relationship during the filling in a low pressure casting process”, Science
and Technology of Advanced Materials, Vol. 2, 2001, pp. 131-145.
[10] Martins F.G. and Carlos Olivera A.S., “Study of full mold casting process
for Al-Si hipoeuthetic alloys”, Journal of Materials Processing Technology,
Vol.179, 2006, pp.196-201.
[11] Kumar S., Kumar P., and Shan H.S., “Optimization of tensile
properties of evaporative pattern casting process through Taguchi method”,
Journal of Materials Processing Technology, Vol. 204, 2008,
pp.59-69.
[12] Xuan Y.X., Ling C., and Jie H.Y., “ Numercial Simulation of
Casting Filling Process Based on Fluent”, Energy Procedia, Vol. 17,
2012, pp. 1864- 1871.
[13] Suilaiman S., Hamouda A.M.S., Abedin S., and Osman M.R., “ Simulation
of metal filling process during the casting process”, Jounrnal of Material
Processing Technology, Vol. 100, 2000, pp. 224-229.
[14] Zhang Y.F., Liu W.K., and Wang H.P., “Cast filling simulation of thinwalled
cavities”, Comput. Methods. Appl. Mech. Engrg., Vol.128, 1995,
pp.199-230.
[15] Zhang X.P., Xiong S.M., and Xu Q.Y., “Numerical method to improve the
computational efficiency of solidification simulation for investment
casting process”, Journal of Materials Processing Technology, Vol.
73, 2006, pp. 70-74.
[16] Begum R. and Basit M.A., “Lattice Boltzmann Method and it Applications
to Fluid Flow Problems”, European Journal of Scientific Research, ISSN
1450-216X Vol. 22, 2008, pp. 216-231.
[17] Welch J.E. and Harlow F.H., “The MAC method, a computing technique fro
solving incompressible, transient fluid flow problem involving free surface”,
Physics of Fluid, Vol.9, 1966, pp. 842-851.
[18] Tu, J., Yeoh, G.H., and Liu, C., 2008, Computational Fluid Dynamics a
Practical Approach, Butterworth-Heinemann, Washington.
[19] Abdulnaser Sayma, 2009, Computational Fluid Dynamics,
www.bookboon.com
[20] ANSYS FLUENT 12.1 Theory Guide., 2010.
[21] Fluent 6.3 Documentation., 2005. Fluent Inc.
[22] Panneerselvam, Savithri R., and Surender S., “CFD simulation of
hydrodynamics of gas-liquid-solid fluidized bed reactor”, Chemical
Engineering Science, Vol. 64, 2009, pp.1119-11135.
[23] Sato, Sadatomi Y., and Sekoguchi M., “ Momentum and heat transient in
two-phase bubble flow”, International Journal of Multiphase, Vol.7, 1981,
pp.167-177.
[24] Jakobsen, H.A., Grevskott, S., and Svendsen, H.F., “Modeling of vertical
bubble-driven flows”, Industrial and Engineering Chemistry Research,
Vol.36, 1997, pp.4052-4072.
[25] Http://www.chemguide.co.uk/physical/phaseeqia/snpb.html. [25] A.D.
[26] Brent, Voller V.R., and Reid K.J., “The enthalpy-porosity technique for
modeling convection-diffusion phase: application to the melting of a pure
metal”, Numerical Heat Transfer Volume 13, 1988, pp. 297-318.
[27] Gibilaro and L. G., 2001,Fluidization Dynamics, Butterworth-Heinemann,
Washington.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top