(3.236.214.19) 您好!臺灣時間:2021/05/10 08:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:施博仁
研究生(外文):Po-Jen Shih
論文名稱:高效率及可調色之螢磷混合多層有機發光二極體
論文名稱(外文):High efficiency and color adjustable fluorescent-phosphorescent hybrid organic light emitting diodes with a multi-emission layer structure
指導教授:楊素華楊素華引用關係
指導教授(外文):Su-Hua Yang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:100
畢業學年度:100
語文別:中文
論文頁數:104
中文關鍵詞:有機發光二極體
外文關鍵詞:OLED
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
本實驗主要是延伸探討螢磷混合有機發光二極體的特性及物理機制,首先分別使用NPB、Bphen來當作電洞傳輸層和電子傳輸層,而在初步實驗中氟化鋰(LiF)扮演相當重要的角色,它增強了電子的注入量。主體材料選擇了CBP,由於它足以提升客體三重激發態的能量,且具有雙偶極傳輸性質的磷光主體,同時屬於電洞傳輸特性,使載子趨近於平衡,以減少電洞極化效應。本實驗中,CBP又以另一重要身分扮演中間層,(1)中間層可防止磷光綠光(Ir(ppy)3)三重態激子能量回傳給螢光藍光(BCzVB)三重態,(2)另外磷光主體三重態激子可藉由中間層形成Dexter能量轉移給磷光綠光三重態,(3)藉由中間層可侷限螢光藍光單重態激子回到基態進而發光。進一步實驗中,則探討磷光綠光材料三重態型式的發光,另一方面作為磷光增感劑來形成單重態激子的通道,藉由Dexter能量轉移給螢光紅光材料(DCJTB)。實驗最後,則探討多層介面間Dexter能量轉移的發光效率。
In this theme, the research subject extended to discuss the material features and physics mechanisms of the hybrid fluorescent-phosphorescent organic light emitting diodes (OLEDs). At first, NPB and Bphen were utilized as hole transfer layer and electron transfer layer materials, respectively. Moreover, LiF played an important role of OLEDs, that improved the injection of electrons. CBP was selected as host material, due to it can promote the energy of triplet states of guest and is a double-dipole phosphorescent host material. In the meanwhile, CBP shows a favored characteristic for hole transfer. Hence, it can not only balance the carriers in the emission layer (EML) but also reduce the h+ polaron effect. In this study, CBP also acted as the role of spacer: (i) the spacer can hinder the higher energy of triplet excitons in the green EML (G-EML) diffusing into the blue EML (B-EML), (ii) let triplet excitons in the B-MEL diffuse into the G-EML by the spacer formed dexter transfer, (iii) defense against the B-EML singlet excitons diffusing into the G-EML to recombine non-radiatively. Furthermore, in this investigation, the emission properties of the triplet state radioactive phosphorescence Ir(ppy)3 were discussed. The singlet excitons path was also formed and increased by phosphorescent sensitization (PS), and the energy was transferred to the DCJTB by Dexter energy transfer. Moreover, the luminance mechanism along with the Dexter energy transfer of the multilayered OLEDs were studied in detail.
Content
Abstract (in Chinese) Ⅰ
Abstract (in English) Ⅱ
Content Ⅳ
Chapter 1 Introduction 1
1-1 The development of displays 1
1-2 Brief history of organic light-emitting diode 1
1-3 Advantages of OLEDs 3

Chapter 2 Review of publications 5
2-1 Materials of OLEDs 5
2-1-1 Materials of cathode 5
2-1-2 Materials of anode 6
2-1-3 Hole injection layer (HIL) 7
2-1-4 Electron injection layer (EIL) 8
2-1-5 Hole transport layer (HTL) 8
2-1-6 Electron transport layer (ETL) 9
2-1-7 Hole blocking layer (HBL) 9
2-1-8 Carrier mobility 10
2-2 The operation theory of OLEDs 11
2-2-1 Absorption and emission 11
2-2-2 Energy transfer 12
2-2-3 Efficiency calculation 13
2-2-4 Solid state solvation effect 14
2-2-5 Space charge limited current 15
2-2-6 Polarization effect 15
2-2-7 P-i-n structure 15
2-2-8 Excimer and exciplex 16

Chapter 3 Experiments and measurement system configuration 20
3-1 Materials 20
3-2 The preparation of deposition source 22
3-3 The treatment of substrate 23
3-4 Deposition system 24
3-5 Measurements 25

Chapter 4 Results and discussion 28
4-1 The optimal thicknesses of NPB and Bphen layers for devices 29
4-2 The optimal concentration of BCzVB doped with CBP in left side of EML 34
4-3 The optimize concentration of Ir(ppy)3 doped with CBP in right side 43
4-4 Insertion of different thicknesses of CBP layer to improve device performance and finding the optimal thickness of CBP 51
4-5 Doping with different concentrations of DCJTB to achieve white light emission and finding the optimal concentration of DCJTB 58
4-6 Using different thicknesses of CBP:Ir(ppy)3 as the phosphorescent sensitization (PS) layer to enhance the performance of the devices 67
4-7 Using different thicknesses of CBP:Ir(ppy)3:DCJTB as the fluorescent-phosphorescent hybrid layer to achieve WOLED 76
4-8 Adjusting the FP-EML location of the symmetrical construction to acquire the highest external quantum efficiency of the devices 84

Chapter 5 Conclusion 94
Reference 95
Publication list 101




Figure Captions

Fig. 1-1 Comparison of inorganic and organic LEDs in the Development of luminescence efficiency 4
Fig. 2-1 Processes of luminescence 17
Fig. 2-2 Mechanism of radiative energy transfer 18
Fig. 2-3 Mechanisms of non-radiative energy transfer: (a) Förster transfer by resonant dipole-dipole coupling and (b) Dexter transfer by electron exchange. 18
Fig. 2-4 Energy level diagram of excimer in two different methods 19
Fig. 2-5 Energy level diagram and schematic diagram of exciplex 19
Fig. 3-1 Chemical structures of NPB, Spiro-Pye, CBP, BCzVB, Ir(ppy)3, DCJTB, and Bphen 26
Fig. 3-2 Photograph of thermal evaporation system. 27
Fig. 4-1 (a) Basic structure and (b) energy level diagram of devices A-1 to A-4 32
Fig. 4-2 (a) Basic structure and (b) energy level diagram of devices A-5 to A-7 33
Fig. 4-3 Current density-voltage curves of devices with different NPB thicknesses from 60 nm to 30 nm and Bphen thicknesses from 50 nm to 30 nm 34
Fig. 4-4 (a) Basic structure and (b) energy level diagram of devices B-1 to B-4 39
Fig. 4-5 Absorption and emission spectra of CBP and BCzVB 40
Fig. 4-6 Luminance-voltage curves of devices with different BCzVB concentration from 6 wt% to 9 wt% 40
Fig. 4-7 Current density-voltage curves of devices with different BCzVB concentrations from 6 wt% to 9 wt% 41
Fig. 4-8 Current efficiency-current density curves of devices with different BCzVB concentrations from 6 wt% to 9 wt% 41
Fig. 4-9 EL spectra of devices with different BCzVB concentrations from 6 wt% to 9 wt% at 10 V 42
Fig. 4-10 CIE coordinates of device with different BCzVB concentrations from 6 wt% to 9 wt% 42
Fig. 4-11 (a) Basic structure and (b) energy level diagram of devices C-1 to C-4 47
Fig. 4-12 Absorption and emission spectra of CBP, BCzVB, and Ir(ppy)3 48
Fig. 4-13 Luminance-voltage curves of devices for Ir(ppy)3 concentrations varying from 4 wt% to 10 wt% 48
Fig. 4-14 Current density-voltage curves of devices for Ir(ppy)3 concentrations varying from 4 wt% to 10 wt% 49
Fig. 4-15 Current efficiency-current density curves of devices for Ir(ppy)3 concentrations varying from 4 wt% to 10 wt% 49
Fig. 4-16 EL spectra of devices operated at 11 V for different Ir(ppy)3 concentrations from 4 wt% to 10wt% 50
Fig. 4-17 CIE coordinates of devices with different Ir(ppy)3 concentrations from 4 wt% to 10wt% 50
Fig. 4-18 (a) Basic structure and (b) energy level diagram of devices D-1 to D-4 55
Fig. 4-19 Luminance-voltage curves of devices with different CBP thicknesses from 1 nm to 7 nm 56
Fig. 4-20 Current density-voltage curves of devices with different CBP thicknesses from 1 nm to 7 nm 56
Fig. 4-21 Current efficiency-current density curves of devices with different CBP thicknesses from 1 nm to 7 nm 57
Fig. 4-22 EL spectra of devices with different CBP thicknesses from 1 nm to 7 nm at 13 V 57
Fig. 4-23 CIE coordinates of device with different CBP thicknesses from 1 nm to 7 nm 58
Fig. 4-24 (a) Basic structure and (b) energy level diagram of devices E-1 to E-4 63
Fig. 4-25 Absorption and emission spectra of CBP, BCzVB, Ir(ppy)3 and DCJTB 64
Fig. 4-26 Luminance-voltage curves of devices with different DCJTB concentrations from 0.25 wt% to 1 wt% 64
Fig. 4-27 Current density-voltage curves of devices with different DCJTB concentrations from 0.25 wt% to 1wt% 65
Fig. 4-28 Current efficiency-current density curves of devices with different DCJTB concentrations from 0.25 wt% to 1wt% 65
Fig. 4-29 EL spectra of the devices operated at 13 V for the G-EML doped with different DCJTB concentrations from 0.25 wt% to 1wt% 66
Fig. 4-30 CIE coordinates of the devices operated at 13 V for the G-EML doped with different DCJTB concentrations from 0.25 wt% to 1wt% 66
Fig. 4-31 (a) Basic structure and (b) energy level diagram of devices F-1 to F-4 72
Fig. 4-32 (a) Basic structure and (b) energy level diagram of device F-5 73
Fig. 4-33 Luminance-voltage curves of devices with different thicknesses of PS layer from 0 nm to 6 nm and exchange 74
Fig. 4-34 Current density-voltage curves of devices with different thicknesses of PS layer from 0 nm to 6 nm and exchange 74
Fig. 4-35 Current efficiency-current density curves of devices with different thicknesses of PS layer from 0 nm to 6 nm and exchange 75
Fig. 4-36 EL spectra of devices with different thicknesses of PS layer from 0 nm to 6 nm and exchange; the applied voltage was at 14V 75
Fig. 4-37 CIE coordinates of device with different thicknesses of PS layer from 0 nm to 6 nm and exchange 76
Fig. 4-38 (a) Basic structure and (b) energy level diagram of devices G-1 to G-4 81
Fig. 4-39 Luminance-voltage curves of devices with different thicknesses of FPL from 0 nm to 6 nm 82
Fig. 4-40 Current density-voltage curves of devices with different thicknesses of FPL from 0 nm to 6 nm 82
Fig. 4-41 Current efficiency-current density curves of devices with different thicknesses of FPL from 0 nm to 6 nm. 83
Fig. 4-42 EL spectra of devices with different thicknesses of FPL from 0 nm to 6 nm at 14 V 83
Fig. 4-43 CIE coordinates of the devices with different thicknesses of FPL from 0 nm to 6 nm 84
Fig. 4-44 (a) Basic structure and (b) energy level diagram of devices H-1 to H-4 89
Fig. 4-45 Luminance-voltage curves of devices with different positions of FPL distanced from Bphen by 0 nm to 15 nm 90
Fig. 4-46 Current density-voltage curves of devices with different positions of FPL distanced from Bphen by 0 nm to 15 nm 90
Fig. 4-47 Current efficiency-current density of devices with different positions of FPL distanced from Bphen by 0 nm to 15 nm 91
Fig. 4-48 EL spectra of devices with different positions of FPL distanced from Bphen by 0 nm to 15 nm at 14 V 91
Fig. 4-49 CIE coordinates of device with different positions of FPL distanced from Bphen by 0 nm to 15 nm 92
Fig. 4-50 Photograph of luminescence performance of device H-4 at 12 V with CIE coordinates of (0.354, 0.494) 93











Table Captions
Table 1-1 Properties comparison between flat panel displays (FPDs) 103
Table 2-1 Work functions of metals 104
[1]J. R. Sheats et al., Science, 273, 884 (1996).
[2]M. Pope, H. Kallman, P. Magnante, J. Chem. Phys., 38, 2042 (1963).
[3]C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987).
[4]J. H. Burrououghes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. MacKay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature, 347, 539 (1990).
[5]B. W. D’Andrade, 2004, White Organic Light Emitting Devices, the faculty of princeton univesity, dissertation.
[6]M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, Z. V. Vardeny, Nature, 409, 494 (2001).
[7]D. F. O’Brien, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, R. C. Kwong, Appl. Phys. Lett., 78, 1622 (2001).
[8]C. W. Tang, S. A. VanSlyke and C. H. Chen, J. Apply. Phys., 65, 3610 (1989).
[9]M. Stossel, J. Staudigel, F. Steuber, J. Simmerer, A. Winnacker, Appl. Phys. A, 68, 387 (1999).
[10]M. Stoβel, J. Staudigel, F. Steuber, J. Blassing, J. Simmerer, A. Winnacker, H. Neuner, D. Metzdorf, H.-H. Johannes, W. Kowalsky, Synth. Met., 111, 19 (2000).
[11]P. A. Serena, J. M. Soler, N. Garcia, Phys. Rev. B, 37, 8701 (1988).
[12]T. Ishida, H. Kobayashi, Y. Nakato, J. Appl. Phys., 73, 4344 (1993).
[13]S. Seki, Y. Sawada, T. Nishide, Thin Solid Films, 388, 22 (2001).
[14]M. Bender, J. Trube, J. Stollenwerk, Appl. Phys. A, 69, 397 (1999).
[15]T. Futagami, Y. Shigesato, T. Yasui, Jpn. J. Appl. Phys. Part 1, 37, 6210 (1998).
[16]T. Maruyama, K. Fukui, Thin Solid Films, 203, 297 (1991).
[17]V. Vasu, A. Subrahmanyam, Thin Solid Films, 193/194, 696 (1990).
[18]M. Ishii, T. Mori, H. Fujikawa, S. Tokito, Y. Taga, Journal of Luminescence, 87, 1165 (2000).
[19]J. S. Kim, M. Granström, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, F. Cacialli, J. Appl. Phys., 84, 6859 (1998).
[20]S. K. Sol, W. K. Choi, C. H. Cheng, L. M. Leung, C. F. Kwong, Appl. Phys. A, 68, 447 (1999).
[21]M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong, M. Wang, J. Appl. Phys., 86, 1688 (1999).
[22]S. A. VanSlyke, C. H. Chen, C. W. Tang, Appl. Phys. Lett., 69, 2160 (1996).
[23]Y. Shirota, Y. Kuwabara, H. Inada, Appl. Phys. Lett., 65, 807 (1994).
[24]Y. Cao, G. Yu, C. Zhang, R. Menon, A. J. Heeger, Synth. Met., 87, 171 (1997).
[25]A. Elschner, F. Bruder, H.-W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm, R. Wehrmann, Synth. Met., 111-112, 139 (2000).
[26]T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, W. J. Feast, Appl. Phys. Lett., 75, 1679 (1999).
[27]S. A. VanSlyke, C. W. Tang, US 5, 061, 569 (1991).
[28]J. Yeob Lee, Appl. Phys. Lett., 88, 073512 (2006)
[29]M. Stoβel, J. Staudigel, F. Steuber, J. Blassing, J. Simmerer, A. Winnacker, Appl. Phys. Lett., 76, 115 (2000).
[30]S. Shi, D. Ma, Applied Surface Science., 252, 6337 (2006).
[31]J. M. Warman, A. M. van de Craats, Mol. Cryst. Liq. Cryst., 396, 41 (2003).
[32]X. Zhang, S. A. Jenekhe, Macromolecules, 33, 2069 (2000).
[33]M. Klessinger, J. Michl, VCH Publishers, New York (1995).
[34]H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, and G. Xu, Science, 283, 1900 (1999).
[35]Z. B. Wang, M. G. Helander, Z. W. Liu, M. T. Greiner, J. Qiu, and Z. H. Lu, Appl. Phys. Lett., 96, 043303 (2010).
[36]R. H.Young, J. J. Fitzgerald, J. Phys. Chem., 99, 4230 (1995).
[37]J. Kido, M. Kimura, and K. Nagai, Science, 267, 1332(1995).
[38]C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, VCH, Weinheim, (1988).
[39]L. Z. Yu, X. Y. Jiang, Z. L. Zhang, L. R. Lou, C. T. Lee, J. Appl. Phys., 105, 013105 (2009).
[40] V. Bulovic, A. Shoustikov, M. A. Baldo, E. Bose, V. G. Kozlov, M. E. Thompson, S. R. Forrest, Chem. Phys. Lett. 287, 455 (1998).
[41]J. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, S. Liu, Appl. Phys. Lett., 80, 139 (2002).
[42]Y. Tomita, C. May, M. Toerker, J. Amelung, M. Eritt, F. Loeffler, C. Luber, K. Leo, K. Walzer, K. Fehse, Q. Huang, Appl. Phys. Lett., 91, 063510 (2007).
[43]I-Min Chan, 2004, The Study of High Performance Organic Light Emitting Device, National Cheng Kung University, dissertation for doctor of philosophy.
[44]J. W. Kang, S. H. Lee, H. D. Park, W. I. Jeong, K. M. Yoo, Y. S. Park, and J. J. Kim, Appl. Phys. Lett. 90, 223301 (2009).
[45]Q. X. Tong, S. L. Lai, M. Y. Chan, K. H. Lai, J. X. Tang, H. L. Kwong, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 91, 153504 (2007).
[46]I. D. Parker, J. Appl. Phys. 75, 1656 (1994).
[47]J. X. Tang et al, Chem. Phys. Lett, 396, 92 (2004).
[48]N. Karl, K. H. Kraft, J. Marktanner, M. Munch, F. Schatz, R. Stehle, H. M. Uhde, J. Vac. Sci. Technol. A 17, 2318 (1999).
[49]D. J. Pinner, R. H. Friend, N. Tessler, J. Appl. Phys. 86, 5116 (1999).
[50](a)D. M. Pai, J. F. Yanus, M. Stolka, J. Phy. Chem, 88, 4714 (1984). (b) X. Gong, M. R. Ro-binson, L. C. Ostrowski, D. Moses, G. C. Bazan, A. J. Jeeger, Adv. Mater., 14, 581 (2001).
[51]H. Kanai, S. Ichinosawa, Y. Sato, Synth. Met., 91, 195 (1997).
[52]Joseph C. Deaton, Rochester, NY (US); Denis Y. Kondakov, Kendall, NY (US); Marina E. Kondakava, Kendall, NY (US); Kevin P. Klubek, West Henrietta, NY (US);Dustin L. Comfort, Hamlin, NY (US) , 0284318 Al, (2008).
[53]C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, S. R. Forrest, Appl. Phys. Letts., 79, 2082, (2001).
[54]Jaewon Lee, Neetu Chopra, Sang-Hyun Eom, Ying Zheng, Jiangeng Xue, Franky So, and Jianmin Shi, Appl. Phys. Letts, 93, 123306 (2008).
[55]Y. Wang, N. Herron, V. V. Grushin, D. LeCloux, and V. Petrov, Appl. Phys. Lett., 79, 4 (2001).
[56]N. C. Giebink and S. R. Forrest, Phy. Rev. 98, 013510 (2005).
[57]R. H. Young, C. W. Tang, and A. P. Marchetti, Appl. Phys. Lett. 80(5), 874 (2002).
[58]M. A. Baldo, R. J. Holmes, and S. R. Forrest, Phys. Rev. B 77(23), 235215 (2008).
[59]B. D. Chin, M. C. Suh, M. –H. Kim, S. T. Lee, H.D Kim, H. K. Chung, Appl. Phys. Lett. 86, 133505 (2005)
[60]Joseph C. Deaton, Rochester, NY(US); Denis Y. Kondakov, Kendall, NY (US); Marina E. Kondakov, Kendall, NY (US); Kevin P. Klubek, west Henrietta, NY (US); Dustin L. Comfort, Hamlin, NY (US),00284318 (2008).
[61]M. A. Baldo, C. Adachi, and S. R. Forrest, Phys. Rev. B 62, 10967 (2000).
[62]Turro, N. J. Modern Molecular Photochemistry (University Science Books, Mill Valley, CA, 1991).
[63]B. W. D’Andrade, R. J. Holmes, S. R. Forrest, Adv. Mater. 16, 624 (2004).
[64]X. -M. Yu, H. -S. Kwok, W. –Y. Wong, G. –J. Zhou, Chem. Mater. 18, 5097 (2006).
[65]Y. Sun, S. R. Forrest, Appl. Phys. Lett. 91, 263503 (2007).
[66]N. C. Giebink and S. R. Forrest, Phys. Rev. B 77(23), 235215 (2008).
[67]C. H. Hsiao, J. H. Lee, J. Appl. Phys. 106, 024503 (2009).
[68]Tianhang Zheng, Wallace C. H. Choy*, Thin Solid Films 519, 872-875 (2010).
[69]Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, S. R. Forrest, Nature, 440, 908 (2006).
[70]M. A. Baldo and D. F. O’Brien*, M. E. Thompson and S. R. Forrest, Phys. Rev. 60(20) (1999).
[71]S. Reineke, K. Walzer, and K. Leo, Phys.Rev. B 75, 125328 (2007).
[72]C.-H. Hsiao, J.-H. Lee, and C.-A. Tseng, Chem. Phys. Lett. 427, 305 (2006).
[73]C.-H. Hsiao, C.-F. Lin, and J.-H. Lee, J. Appl. Phys. 102, 094508 (2007).
[74]Chih-Hung Hsiao and Jiun-Haw Lee, J. Appl. Phys. 106, 024503 (2009).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔