(3.92.96.236) 您好!臺灣時間:2021/05/07 14:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:許益銘
研究生(外文):Yi-Ming Hsu
論文名稱:利用氣相傳輸法於沉積AZO薄膜的矽基板成長ZnO奈米線及其特性探討
論文名稱(外文):Characterizations of ZnO nanowires grown on AZO deposited silicon substrate by vapor transport method
指導教授:楊素華楊素華引用關係
指導教授(外文):Su-Hua Yang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:100
畢業學年度:100
語文別:英文
論文頁數:98
中文關鍵詞:奈米線場發射半導體材料
外文關鍵詞:Zinc oxide nanowireField emissionsemiconducter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,利用氣相傳輸法,成功將氧化鋅奈米線均勻成長在沉積ZnO:Al (AZO)薄膜的矽基板上;當以螢光面為陽極時,可測得整面電子發射激發發光的影像。奈米線製作時,首先利用濺鍍法將AZO薄膜沉積在矽基板上,接著在充滿氧氣與氮氣的氛圍下,藉由改變成長溫度、上升溫度速率、成長時間、氣體流量、基板位置、氧化鋅粉與碳粉的組成比例等變數來探討奈米線的成長、結構及特性。
AZO薄膜沉積在矽基板上的目的是為了要當作成長氧化鋅奈米線的催化層,且AZO的電阻率較低。氧化鋅奈米線的結晶性和優選方向是利用X-ray繞射來分析,從量測結果知,氧化鋅奈米線具有良好的單晶結構且優選方向均為(002)。不同製程條件下所成長之奈米線外觀與結構是以場發射電子顯微鏡來觀測。
氧化鋅奈米線的最佳成長條件為:碳粉與氧化鋅粉以1:1重量比混合作為成長奈米線的材料源並與已沉積AZO薄膜的矽基板相距10 公分;成長溫度設定為1100℃並持溫70分鐘,爐管內的氮氣與氧氣流量分別為70和60 sccm,爐管升溫速率為20℃/min。成長出的氧化鋅奈米線有較好的分佈密度,在場發射的量測中,當電流密度為0.1 μA/cm2對應到較低的起始電場,為0.11 V/μm,並擁有最好的場增強因子其值為1782。
In this thesis, the ZnO nanowires were successfully homogeneous grown on the ZnO:Al (AZO) deposited silicon substrate; A uniform cathodoluminescence image was observed from the entire sample when a phosphor screen was used as anode. For the growth of ZnO nanowires, first, an AZO thin film was deposited on a silicon substrate by sputtering method, after that, the parameters of growth temperature, temperature rising rate of furnace, growth time, gas flow rate, substrate position, and the weight ratio of ZnO to graphite powders were varied to investigate the characteristics of ZnO nanowires.
The deposited AZO thin film was used as catalyst layer for the growth of ZnO nanowires; low resistivity is a prefer property of AZO. The crystallinity and preferred growth orientation of ZnO nanowires were analyzed by X-ray diffraction (XRD) patterns. It shows that the ZnO nanowires had a better single crystalline structure and the preferred growth orientation was [002]. The morphologies and structures of nanowires were measured by scan emission microscopy (SEM).
The optimal characteristics of nanowires were obtained when the source was a mixture composed of graphite and ZnO with a concentration ratio of 1:1 in weight; the distance between the source material and the AZO deposited Si substrate was 10 cm. The nanowires were grown at 1100℃ for 70 minutes under N2/O2 ambience with N2 and O2 flow rates of 70 and 60 sccm, respectively; and the temperature rising rate of furnace was 20℃/min. The ZnO nanowires, with the best distribution density, had an optimal field emission characteristic and showed a low turn-on electric field of 0.11 V/μm when the emission current density reached 0.1 μA/cm2; the field enhancement factor β was 1782.
摘要 Ⅰ
Abstract III
Chapter1…………………………………………………………………1
Introduction 1
1-1 Preface 1
1-2 Introduction to nanotechnology 2
1-3 ZnO characteristics and nanostructures…………………………….4
Chapter 2………………………………………………………….......... 6
Review and Theory Basis Properties 6
2-1 Overview of Zinc Oxide 6
2-2 Sputtering 7
2-3 The Luminescence Mechanism of Zinc Oxide 7
2-4 Fowler-Nordheim Theory 8
Chapter 3……………………………………………………………….10
Experimental Details and Measurement System Configurations 10
3-1 Experiments procedures 10
3-1-1 Experiment materials 10
3-1-2 Substrate treatment 10
3-1-3 The fabrication of ZnO nanowires 12
3-2 Analyses system 13
3-2-1 Scanning electron microscopy (SEM) 13
3-2-2 X-ray powder diffraction (XRD) 14
3-2-3 Transmission electron microscopy (TEM) 14
3-2-4 Photoluminescence (PL) 15
3-2-5 Field emission measurement………………………………….16
Chapter 4……………………………………………………………… 17
Results and Discussion 17
4-1 Comparison of ZnO nanowires grown on different
seed layers 18
4-1-1 ZnO nanowire growth 18
4-1-2 XRD patterns of the different seed layers 19
4-1-3 Field emission properties 19
4-2 Effect of ZnO nanowires synthesized at different
temperatures 20
4-2-1 Scanning electron microscopy (SEM) analyses 20
4-2-2 X-ray diffraction (XRD) patterns 21
4-2-3 Field emission properties 22
4-2-4 Transmission electron microscopy (TEM) analyses 23
4-2-5 Electron emission images 23
4-3 Effect of growth time on the properties of ZnO nanowires….24
4-3-1 Scanning electron microscopy (SEM) analyses……………...24
4-3-2 X-ray diffraction (XRD) patterns 25
4-3-3 Photoluminescence (PL) analyses 25
4-3-4 Field emission properties 26
4-3-5 Electron emission images 27
4-4 Properties of ZnO nanowires grown at different
oxygen flow rates 28
4-4-1 Scanning electron microscopy (SEM) analyses 28
4-4-2 X-ray diffraction (XRD) patterns 29
4-4-3 Photoluminescence (PL) analyses 29
4-4-4 Field emission properties 30
4-4-5 Transmission electron microscopy (TEM) analyses 31
4-4-6 Electron emission images 31
4-5 Effect of temperature rising rate on the synthesis
of nanowires 32
4-5-1 Scanning electron microscopy (SEM) analyses 32
4-5-2 X-ray diffraction (XRD) patterns 33
4-5-3 Photoluminescence (PL) analyses 34
4-5-4 Field emission properties 34
4-6 Effect of weight ratio of ZnO to graphite powders
on the synthesis of nanowires 35
4-6-1 Scanning electron microscopy (SEM) analyses 36
4-6-2 X-ray diffraction (XRD) patterns 37
4-6-3 Photoluminescence (PL) analyses 37
4-6-4 Field emission properties 38
4-7 Effect of substrate position on the synthesis
of nanowires 39
4-7-1 Scanning electron microscopy (SEM) analyses 39
4-7-2 X-ray diffraction (XRD) patterns 40
4-7-3 Photoluminescence (PL) analyses 40
4-7-4 Field emission properties 41
4-7-5 Electron emission images and stability measurement 42
Chapter 5……………………………………………………………… 43
Conclusion 43
Reference 45
Publication list 50
Table Captions

Table. 1-1 Basic characteristic of zinc oxide 51

Figure Captions

Figure 1-1 Illustrations of representing system dimensionality 52
Figure 1-2 Densities of states N(E) for (a) 3D, (b) 2D, (c) 1D, and (d) 0D systems (corresponding to ideal cases).. 52
Figure 2-1 Energy band diagram for (a) n type and (b) p type nanowires in electric field showing electron and hole tunneling, respectively………………………………………………..53
Figure 3-1 Flow chart of experiment procedures. 54
Figure 3-2 Flow chart for substrate cleaned by RCA process.. 55
Figure 3-3 Skeleton diagram of ZnO nanowires growth system …….56
Figure 3-4 Image of Keithley 2410 power supply. …….56
Figure 3-5 Image of field emission measurement system. ……………57
Figure 3-6 Schematic of Field emission measurement with a diode configuration. The cathode was the as-grown ZnO nanowires and the p-type Si substrate was used as a cathode-conduction layer. The anode was a glass coated with indium tin oxide……………………………………………………….57
Figure 4-1 SEM images of ZnO nanowires grown on (a) AZO, (b) ZnO, and (c) Au seed layer-deposited silicon substrate. 58
Figure 4-2 XRD patterns of ZnO and AZO seed layer deposited on silicon substrate. 58
Figure 4-3 Plots of current density-electric field characteristics of the ZnO nanowires grown on (a) AZO, (b) ZnO, and (c) Au seed layer-deposited silicon substrate. 59
Figure 4-4 SEM images of ZnO nanowires grown under different temperatures; top views are for ZnO nanowires grown at (a) 1000℃(x7000), (b) 1100℃ (x7000), and (c) 1200℃ (x3000). The images in (d) ‒ (f) were corresponding cross-sectional views of (a) ‒ (c). 60
Figure 4-5 XRD patterns of ZnO nanowires grown under different growth temperatures.. 61
Figure 4-6 Field-emission measurements of the ZnO nanowires. (a) Plots of current density-electric field characteristics; (b) corresponding F-N plots. 62
Figure 4-7 TEM micrographs of ZnO nanowires grown at temperature of 1100℃: (a) a low-resolution TEM, (b) SAED, (c) high-resolution TEM 63
Figure 4-8 Electron emission images of ZnO nanowires. (a) Photo of a diode configuration for field emission measurement. (b) Electron emission image for ZnO nanowire grown at 1100℃. 64
Figure 4-9 SEM images of ZnO nanowires grown under different growth time; top views are for ZnO nanowires grown at (a) 40 (x7000), (b) 50 (x7000), (c) 60 (x7000), and (d) 70 min (x500). The images in (e) ‒ (h) are corresponding cross-sectional views of (a) ‒ (d). 65
Figure 4-10 XRD patterns of ZnO nanowires grown with different growth time. 66
Figure 4-11 PL spectra of ZnO nanowires grown with different growth time. 66
Figure 4-12 Field-emission measurements of ZnO nanowires; (a) plots of current density-electric field characteristics and (b) the corresponding F-N plots. 67
Figure 4-13 Electron emission images of ZnO nanowires. (a) Plot of a diode configuration for field emission measurement. (b) ‒ (d) Electron emission images for ZnO nanowires grown at 40, 50, and 70 min, respectively. 68
Figure 4-14 SEM images of ZnO nanowires grown under different N2/O2 flow ratios; top views are for ZnO nanowires grown at (a) 70:30 (x5000), (b) 70:40 (x5000), (c) 70:50 (x500), (d) 70:60 (x5000). The images in (e) ‒ (h) were corresponding cross-sectional views of (a) ‒ (d) 69
Figure 4-15 XRD patterns of ZnO nanowires grown at different N2/O2 flow ratios 70
Figure 4-16 PL spectra of ZnO nanowires grown at different N2/O2 flow ratios 70
Figure 4-17 Field-emission measurements of ZnO nanowires; (a) plots of current density-electric field characteristics and (b) the corresponding F-N plots 71
Figure 4-18 TEM micrographs of ZnO nanowires grown under N2/O2 flow rate of 70:60; (a) a low-resolution TEM, (b) SAED, and (c) high-resolution TEM images. 72
Figure 4-19 Electron emission images of ZnO nanowires. (a) Plot of a diode configuration for field emission measurement. (b) Electron emission image for ZnO nanowire grown at N2/O2 = 70:60. 73
Figure 4-20 SEM photohraphs for ZnO nanowires grown under different temperature rising rates; top view (x5000) for (a) 10, (b) 20, and (c) 30 ℃/min. The images in (d)-(f) are corresponding cross-sectional views of (a) ‒ (c) 74
Figure 4-21 XRD patterns of ZnO nanowires grown under different temperature rise rates 75
Figure 4-22 PL spectra of ZnO nanowires grown under different temperature rise rates. 75
Figure 4-23 Field-emission measurements of ZnO nanowires; (a) plots of current density-electric field characteristics and (b) the corresponding F-N plots. 76
Figure 4-24 SEM images of ZnO nanowires grown different weight ratios of ZnO to graphite powders; top views (5000X) for (a) 3:6, (b) 1:1, and (c) 6:3; (d) ‒ (f) are corresponding cross-sectional views of (a) ‒ (c). 77
Figure 4-25 XRD patterns of ZnO nanowires grown with different weight ratios of ZnO to graphite powders. 78
Figure 4-26 PL spectra of ZnO nanowires grown with different weight ratios of ZnO to graphite powders. 78
Figure 4-27 Field-emission measurements of ZnO nanowires; (a) plots of current density-electric field characteristics and (b) the corresponding F-N plots. 79
Figure 4-28 SEM images of ZnO nanowires grown at different positions of substrate apart from source material; top views (3000X) for (a) 5, (b) 10, and (c) 15 cm; (d)-(f) are corresponding cross-sectional views. respectively 80
Figure 4-29 XRD patterns of ZnO nanowires grown at different positions of substrate 81
Figure 4-30 PL spectra of ZnO nanowires grown at different positions of substrate 81
Figure 4-31 Field-emission measurements of ZnO nanowires; (a) plots of current density-electric field characteristics and (b) the corresponding F-N plots. 82
Figure 4-32 Electron emission images of ZnO nanowire. (a) Plot of diode configuration for field emission measurement. (b)-(d) Electron emission image for ZnO nanowire grown at 5 cm, 10 cm, and 15 cm, respectively. 83
Figure 4-33 Stability measurement of the ZnO nanowires 84
[1]H.W. Kroto, J.R. Heath, S. O'Brien, R.F. Curl, R.E. Smalley, Nature (London) 318 (1985) 162.
[2]S. Iijima, Nature 354 (1991) 56.
[3] S. Iijima, T. Ichihashi, Nature 363 (1993) 603.
[4]D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Nature (London) 363 (1993) 605.
[5]B.M. Ataev, I.K. Kamilov, V.V. Mamedov, Tech. Phys. Lett. 23 (1997) 842.
[6] H. Saitoh, M. Saitoh, N. Tanaka, Y. Ueda, S. Ohshio, Jpn. J. Appl. Phys. 38 (1999) 6873
[7]R. Konenkamp, K. Boedecker, M.C. Lux-Steiner, M. Poschenrieder, F. Zenia, C.L. Clement, S. Wagner, Appl. Phys. Lett. 77 (2000) 2575.
[8] Y. Li, G.W. Meng, L.D. Zhang, Appl. Phys. Lett. 76 (2000) 2011.
[9] M.J. Zheng, L.D. Zheng, G.H. Li, W.Z. Shen, Chem. Phys. Lett. 363 (2001) 113.
[10]Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feang, Appl. Phys. Lett. 78 (2001) 1897.
[11]M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Adv. Mater. 13 (2001) 113.
[12]M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292 (2001) 1897.
[13]W.I. Parks, Y.H. Jun, S.W. Jung, Gyu-Chul Yi, Appl. Phys. Lett. 82 (2003) 964.
[14]S.Y. Li, C.Y. Lee, T.Y. Tseng, J. Crystal Growth 247 (2003) 357.
[15]D. Banerjee, J.Y. Lao, D.Z. Wang, J.Y. Huang, Z.F. Ren, D. Steeves, B. Kimball, M. Sennett, Appl. Phys. Lett. 83 (2003) 2061.
[16]J. Lee, K. Park, M. Kang, I. Park, S. Kim, W.K. Cho, H.S. Han, S. Kim, J. Crystal Growth 254 (2003) 423.
[17]Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291 (2001) 1947.
[18]M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Science 292 (2001) 1897.
[19]A. Umar, Y.B. Hahn, Nanotechnology 17 (2006) 2174.
[20]G.H. Du, F. Xu, Z.Y. Yuan, G. Van Tendeloo, Appl. Phys. Lett. 88 (2006) 243101.
[21]Z. Fang, K.B. Tang, G.Z. Shen, D. Chen, R. Kong, S.J. Lei, Mater. Lett. 60 (2006) 2530.
[22] C.X. Xu, X.W. Sun, J. Cryst. Growth 277 (2005) 330.
[23]J. Wang, J.M. Cao, B.Q. Fang, P. Lu, S.G. Deng, H.Y. Wang, Mater. Lett. 59 (2005) 1405.
[24]M. Fu, J. Zhou, Q.F. Xiao, B. Li, R.L. Zong, W. Chen, J. Zhang, Adv. Mater. 18 (2006) 1001.
[25]X.T. Zhou, N. Wang, F.C.K. Au, H.L. Lai, H.Y. Peng, I. ello, C.S. Lee, S.T. Lee, Mater. Sci. Eng. A 286 (2000) 119.
[26]X.T. Zhou, H.L. Lai, H.Y. Peng, F.C. K. Au, L.S. Liao, N. Wang, I. Bello, C.S. Lee, S.T. Lee, Chem. Phys. Lett. 318 (2000) 58.
[27]J. Wang, M.S. Gudiksen, X. Duan, Y. Cui, C.M. Leiber, Science, 293 (2001) 1455.
[28]X.C. Wu, W.H. Song, K.Y. Wang, T. Hu, B. Zhao, Y.P. Sun, J.J. Du, Chem. Phys. Lett. 336 (2001) 53.
[29] G. Timp, New York 46 (1999) 87.
[30] A.D. Yoffe, Adv. Phys. 51 (2002) 799.
[31]Dingle, R., Proceedings of 13th International Conference on the Physics of Semiconductors, Rome, edited by F. G. Fumi 45 (1976) 965.
[32] Rodgers, P. Journal of Nature Nanotechnology 585 (2006) 53.
[33]Y.J. Xing, Z.H. Xi, Z.Q. Xue, X. D. Zhang, J.H. Song, R.M. Wang, J. Xu, Y. Song, S.L. Zhang, and D.P. Yu, Appl. Phys. Lett. 83 (2003) 1689.
[34]Q. Zhao, H.Z. Zhang, Y.W. Zhu, S.Q. Feng, X.C. Sun, J. Xu, D.P. Yu, Appl. Phys. Lett. 86 (2005) 203115.
[35]K. Ip, M. Frazier, Y.W. Heo, D.P. Norton, C.R. Abernathy, S.J. Pearton, J. Vac. Sci. Technol. B 21 (2003) 147.
[36]W.I. Park, J.S. Kim, G.C. Yi, H.J. Lee, Adv. Mater. 17 (2005) 1393.
[37]J.H. He, C.S. Lao, L.J. Chen, D. Davidovic, Z. L. Wang, J. Am. Chem. Soc. 127 (2005) 16376.
[38]H. Kind, H. Yan, B. Messer, B.W. Law, P.D. Yang. Adv Mater. 14 (2002) 158.
[39]S. Bethke, H. Pan, B.W. Wessels, Appl. Phys. Lett. 52 (1998) 138.
[40]H.S. Kang, J.S. Kang, J.W. Kim, S.Y. Lee, J. Appl. Phys. 95 (2004) 1246.
[41]X. Xu, C. Guo, Z. Qi, H. Liu, J. Xu, C. Shi, C. Chong, W. Huang, Y. Zhou, C. Xu, Chem. Phys. Lett. 364 (2002) 57.
[42]H.S. Kang, J.S. Kang, J.W. Kim, S.Y. Lee, J. Appl. Phys. 95 (2004) 1246.
[43] P. Zu, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Solid State Commun. 103 (1997) 459.
[44]S. Cho, J. Ma, Y. Kim, Y. Sun, G.K.L. Wong, J.B. Ketterson, Appl. Phys. Lett. 75 (1999) 2761.
[45]V. Srikant, D.R. Clarke, J. Appl. Phys., 83 (1998) 5447.
[46]L. Liao, J.C. Li, D.F. Wang, C. Liu, Q. Fu, Materials letters 59 (2005) 2465.
[47]R.H. Fowler, D. L. Nordheim, Roy. Soc. Proc. A 119 (1928) 173.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔