(3.236.231.61) 您好!臺灣時間:2021/05/15 22:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:楊智凱
研究生(外文):Chih-Kai Yang
論文名稱:場放射顯示器之橘紅光LaPO4:Eu3+ 螢光粉合成及特性探討
論文名稱(外文):Synthesis and Characterization of Reddish-Orange LaPO4:Eu3+ Phosphor for Field Emission Display
指導教授:楊素華楊素華引用關係
指導教授(外文):Su-Hua Yang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:100
畢業學年度:100
語文別:中文
論文頁數:100
中文關鍵詞:磷酸鑭場放射顯示器螢光粉
外文關鍵詞:LaPO4:Eu3+Field emission displayPhosphor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:615
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
場放射顯示器(Field Emission Display,FED)是現今受到關注的顯示器技術,而螢光粉的發光效率將會決定FED的優劣,因此研發出高效率低電壓的螢光粉成為現今重要的課題。在眾螢光粉中,LaPO4由於擁有高溫穩定及高不溶解性兩大優點,目前已被廣泛的運用在電漿顯示器、無汞燈泡和可見光激光器等領域,但在FED領域並無看到實際的應用。共沉澱法是擁有不需昂貴設備即能製作出大量螢光粉之方法,因此本研究嘗試利用此方法合成出橘紅光LaPO4:Eu3+螢光粉,藉此降低FED生產成本。
本研究主要可分為三個階段:(1)針對La1-xPO4:xEu3+濃度、燒結溫度、燒結時間進行比較,藉此得到LaPO4:Eu3+的最佳合成數據;(2)針對不同反應原料進行比較,並選擇出最佳原料。(3)使用共沉澱法為製備方法,並藉由添加介面活性劑SDS 及分散劑(NaPO3)6進行表面改質來提升粉體的發光特性以及利用奈米碳管(Carbon Nanotube,CNT)的導電性來強化LaPO4:Eu3+的冷陰極光(Cathodoluminescence,CL)發光強度。
本研究使用共沉澱法合成出LaPO4:Eu3+螢光粉,其在396 nm光激發下可放射出波長594 nm (5D0→7F1)的橘紅光,在Eu3+濃度為7 mol% 且燒結溫度為1200°C以及燒結時間2h的條件下,可得到最佳發光亮度,其最強的放射峰位於594 nm。並且在不同原料的合成比較之下,使用(NH4)2HPO4所得之橘紅光色純度為最佳。研究也證實透過表面改質能有效提升螢光粉的發光特性,且與商用橘紅光螢光粉進行比較後,本研究螢光粉之發光特性也優於商用螢光粉,在研究中證實添加CNT確實有助於提升CL的強度。
Nowadays, field emission displays (FEDs) have attracted much attention in the technologies of flat panel displays. The luminous efficiency of phosphor determines the performance of FED. Therefore, development of a high efficient low-voltage phosphor has become an important issue for FEDs. Among the materials of phosphors, LaPO4 has two major advantages, which are high insolubility and stability against high temperatures. It has been widely used in the field of plasma display panel (PDP), mercury-free lamp and visible lasers, but it has not been application on FEDs. Coprecipitation method can produce a high yield for phosphor preparation with no expensive equipment. That is the reason why this theme attempts to use this method to synthesize reddish-orange LaPO4:Eu3+ phosphor, which can reduce the costs of FED.
There are three subjects in this thesis: (1) the preparation parameters of doping concentration, sintering temperature, and sintering time were optimized in order to achieve high efficiency of La1-xPO4:xEu phosphor; (2) the influence of raw materials on the characteristic of phosphor was investigated and discussed; (3) surfactant SDS and dispersant (NaPO3)6 were added and the coprecipitation method was used to modify the surface property of particles in order to improve the luminescence properties of the phosphor, in addition, high conductivity of carbon nanotubes (CNTs) was used to enhance the cathodoluminescence (CL) intensity of LaPO4:Eu3+ phosphor.
LaPO4:Eu3+ phosphor is synthesized by coprecipitation method in this theme, which shows reddish-orange emission at wavelength of 594 nm (5D0→7F1) under the excitation at wavelength of 396 nm. The maximum luminescence intensity of LaPO4:Eu3+ phosphor was prepared with the conditions of Eu3+ concentration 7 mol%, sintering temperature 1200°C, and sintering time 2 hours, in which the strongest radiation peak is at 594 nm. In addition, the properties of phosphor prepared with different raw materials were measured and discussed. It shows that the best purity of reddish-orange emission was obtained when (NH4)2HPO4 was used. Furthermore, surface modification was executed, which can effectively enhance the luminescence properties of phosphors. Comparison with the commercial reddish-orange phosphor, the luminescence properties of the as-prepared phosphors is better than that of the commercial phosphor. Moreover, this research confirms that adding CNT does enhance the cathodoluminescence (CL ) intensity of phosphor.
致謝 I
摘要 II
ABSTRACT IV
CONTENT VI
FIGURE CAPTIONS XI
TABLE CAPTIONS XVI
CHAPTER 1、 INTRODUCTION 1
1.1、 Preface 1
1.2、 Literature Review 3
1.2.1、 Solid-state method 3
1.2.2、 Hydrothermal method 3
1.2.3、 Combustion method 4
1.2.4、 Sol-gel method 4
1.2.5、 Coprecipitation method 5
1.3、 Motivation and Objectives 6
CHAPTER 2、 BASIC THEORY 8
2.1、 Introduction of phosphors 8
2.1.1、 Fluorescence and phosphorescence 10
2.1.2、 Absorption and excitation of the phosphor 12
2.1.3、 Fluorescence and nonradiative transfer 14
2.1.4、 Concentration quenching 17
2.2、 Properties of phosphors 19
2.2.1、 Crystal field theory 19
2.2.2、 Emission efficiency of phosphors 20
2.2.3、 Luminescence property of the rare earth elements 21
2.3、 Types and principles of the luminescence center 24
CHAPTER 3、 RESEARCH METHODS OF MATERIALS 27
3.1、 Experiment materials 27
3.2、 Experiment procedures 29
3.2.1、 Grinding 30
3.2.2、 The comparison of different additions 30
3.2.3、 Surface modification 30
3.2.4、 The synthesis of solid-state method 31
3.3、 Measurement system 32
3.3.1、 X-ray Diffraction (XRD) 32
3.3.2、 Scanning Electron Microscopy (SEM) 33
3.3.3、 Energy Dispersive X-ray spectroscopy (EDX) 34
3.3.4、 Photoluminescence (PL) 34
3.3.5、 International Commission on Illumination (CIE) coordinates 35
3.3.6、 Fourier Transform Infrared spectroscopy (FTIR) 36
3.3.7、 Transmission Electron Microscopy (TEM) 37
CHAPTER 4、 RESULTS AND DISCUSSION 38
4.1、 The Synthesis and Characteristic Analysis of LaPO4:Eu3+ Phosphor 38
4.1.1、 The Different of Concentrations(La1-xPO4:xEu3+) 38
4.1.2、 The Variation of Sintered Temperatures (La0.93PO4:0.07Eu3+) 50
4.1.3、 The Variation of Sintered Time (La0.93PO4:0.07Eu3+) 54
4.1.4、 The influence of Grinding (La0.93PO4:0.07Eu3+) 58
4.1.5、 Summary 60
4.2、 The characteristics of Eu3+ doped LaPO4 62
4.2.1、 XRD analyses 62
4.2.2、 Luminescent Properties 62
4.2.3、 CIE Analysis 66
4.3、 The synthesis methods of LaPO4:Eu3+ 69
4.3.1、 XRD analyses 69
4.3.2、 SEM analyses 71
4.3.3、 Luminescent Properties 71
4.3.4、 Phosphors Decay Curve 73
4.3.5、 CIE Analysis 75
4.3.6、 Summary 76
4.4、 Surface modification 78
4.4.1、 The effect on Surfactant SDS on the luminescence characteristics of LaPO4:Eu3+ 78
4.4.2、 The effect on dispersant (NaPO3)6 on the luminescence characteristics of LaPO4:Eu3+ 84
4.4.3、 Summary 88
4.5、 CNT 90
4.5.1、 PL analyses 90
4.5.2、 CL analyses 91
4.5.3、 The photograph of CL performance 94
CHAPTER 5、 CONCLUSION 95
REFERENCES 96
1.楊素華, 螢光粉在發光上的應用. 科學發展, 2002. 10(358).
2.劉博文, 光電元件導論2005.
3.Nakazawa, E. and F. Shiga, Vacuum ultraviolet luminescence-excitation spectra of RPO4 : Eu3+ (R = Y, La, Gd and Lu). Journal of Luminescence, 1977. 15(3): p. 255-259.
4.林群哲 and 劉如熹, 白光發光二極體製作技術-由晶粒金屬化至封裝. 全華圖書股份有限公司, 2008: p. p4-21~p4-23.
5.van Pieterson, L. and A. Meijerink, Charge transfer luminescence of Yb3+ in orthophosphates. Journal of Alloys and Compounds, 2000. 300–301(0): p. 426-429.
6.Ferhi, M., K. Horchani-Naifer, and M. Férid, Hydrothermal synthesis and photoluminescence of the monophosphate LaPO4:Eu(5%). Journal of Luminescence, 2008. 128(11): p. 1777-1782.
7.de Sousa Filho, P.C. and O.A. Serra, Red, green, and blue lanthanum phosphate phosphors obtained via surfactant-controlled hydrothermal synthesis. Journal of Luminescence, 2009. 129(12): p. 1664-1668.
8.Xiu, Z., et al., Photoluminescence of Eu3+-doped LaPO4 nanocrystals synthesized by combustion method. Materials Research Bulletin, 2006. 41(3): p. 642-646.
9.Ferhi, M., K. Horchani-Naifer, and M. Férid, Combustion synthesis and luminescence properties of LaPO4: Eu (5%). Journal of Rare Earths, 2009. 27(2): p. 182-186.
10.Jyothi, C.K., et al., Titania–lanthanum phosphate photoactive and hydrophobic new generation catalyst. Journal of Solid State Chemistry, 2011. 184(7): p. 1867-1874.
11.Rambabu, U., et al., Emission spectra of LnPO4:RE3+ (Ln=La, Gd; RE=Eu, Tb and Ce) powder phosphors. Materials Chemistry and Physics, 2003. 78(1): p. 160-169.
12.Lai, H., et al., Correlation of photoluminescence of (La, Ln) PO4:Eu3+ (Ln = Gd and Y) phosphors with their crystal structures. Journal of Nanoparticle Research, 2008. 10(8): p. 1355-1360.
13.Xiu, Z., et al., Synthesis, structural and luminescence properties of Dy3+-doped YPO4 nanocrystals. Optical Materials, 2006. 29(4): p. 431-434.
14.Liang, X., et al., Luminescent properties of Dy3+-doped and Dy3+–Tm3+co-doped phosphate glasses. Journal of Luminescence, 2008. 128(7): p. 1162-1164.
15.Dominiak-Dzik, G., et al., Effect of temperature on luminescence and VUV to visible conversion in the YAl3(BO3)4:Dy3+ (YAB:Dy) crystal. Radiation Measurements, 2004. 38(4–6): p. 557-561.
16.Wu, C., Y. Wang, and W. Jie, Hydrothermal synthesis and luminescent properties of LnPO4:Tb (Ln = La, Gd) phosphors under VUV excitation. Journal of Alloys and Compounds, 2007. 436(1–2): p. 383-386.
17.Rao, R.P. and D.J. Devine, RE-activated lanthanide phosphate phosphors for PDP applications. Journal of Luminescence, 2000. 87–89(0): p. 1260-1263.
18.蘇勉曾,吳世康, 發光材料. 2004.
19.Liu, M., et al., Effect of temperature on pulsed laser deposition of ZnO films. Applied Surface Science, 2006. 252(12): p. 4321-4326.
20.Vanheusden, K., et al., Green photoluminescence efficiency and free-carrier density in ZnO phosphor powders prepared by spray pyrolysis. Journal of Luminescence, 1997. 75(1): p. 11-16.
21.Blasse, G. and B.C. Grabmaier, Luminescence Materials. Springer-verlag:New York, 1994.
22.楊俊英, 電子產業用螢光材料之調查. 1992.
23.Kitai, A.H., solid state Luminescence. Chapman & Hall press, Cambridge 1993.
24.Mahalley, B.N., R.B. Pode, and P.K. Gupta, Synthesis of GdVO4 : Bi,Eu Red Phosphor by Combustion Process. 2000. 177(1): p. 293-302.
25.Liu, H., et al., Preparation and luminescence properties of nanocrystalline La2O3:Eu phosphor. Materials Letters, 2007. 61(10): p. 1968-1970.
26.劉如熹,劉宇桓, 發光二極體用氧氮螢光本介紹. 全華圖書股份有限公司, 206.
27.S.O. Kasap, 光電子學與光子學:原理與應用. 2009年9月.
28.Webber, M.J., Phosphor Handbook. CRC Press, Boca Raton, 1999.
29.Yang, P., et al., Solvothermal synthesis and luminescent properties of monodisperse LaPO4:Ln (Ln=Eu3+, Ce3+, Tb3+) particles. Journal of Solid State Chemistry, 2009. 182(5): p. 1045-1054.
30.Blasse, G., Energy transfer between inequivalent Eu2+ ions. Journal of Solid State Chemistry, 1986. 62(2): p. 207-211.
31.li, Y., et al., LaPO4:Eu3+ in situ formed in polymeric gels and its photophysical properties. Optical Materials, 2012. 34(7): p. 1019-1022.
32.Inokuti, M. and F. Hirayama, Influence of Energy Transfer by the Exchange Mechanism on Donor Luminescence. Journal of Chemical Physics, 1965: p. 43.
33.Fujiwara, T., et al., Photoluminescence properties of Eu-implanted AlxGa1–xN (0 ≤ x ≤ 1). physica status solidi (c), 2005. 2(7): p. 2805-2808.
34.Nakanishi, Y., et al., Effect of Alloy Composition on Photoluminescence Properties of Europium Implanted AlGaInN. physica status solidi (c), 2002(1): p. 461-464.
35.Liu, Y., et al., Synthesis and luminescence of sub-micron sized Ca3Sc2Si3O12:Ce green phosphors for white light-emitting diode and field-emission display applications. Journal of Alloys and Compounds, 2010. 504(2): p. 488-492.
36.Schmechel, R., et al., Photoluminescence properties of nanocrystalline Y2O3:Eu3+ in different environments. Scripta Materialia, 2001. 44(8–9): p. 1213-1217.
37.張雪飛, LaP04:Eu的熒光納米粒子的合成及其在生物分析中的應用. 東北大學理學院, 2008.
38.Ruigang, W., et al., Synthesis and sintering of LaPO4 powder and its application. Materials Chemistry and Physics, 2003. 79(1): p. 30-36.
39.劉強, 納米LaP04:Eu3 +的製備及發光性能研究. 中國海洋大學材料科學與工程研究院, 2010.
40.Polizzi, S., et al., Investigation on lanthanide-doped Y2O3 nanopowders obtained by wet chemical synthesis. Journal of Materials Chemistry, 2002: p. 742-747.
41.李風生, 超細粉體技術. 國防工業出版社,北京,中國, 2000.
42.張立德 and 牟季美, 奈米材料和奈米結構. 科學出版社,北京,中國, 2001.
43.趙沈琛, 介面科學基礎. 復文書局, 2000.
44.Li, X. and W. Wang, Preparation of uniformly dispersed YAG ultrafine powders by co-precipitation method with SDS treatment. Powder Technology, 2009. 196(1): p. 26-29.
45.徐修生, 硫化鋅摻錳螢光粉之製備與性質研究. 國立成功大學材料科學及工程學系, 2002.
46.陳華東, et al., 六偏磷酸鈉的應用及製備技術. 昆明理工大學化工學院, 2010.
47.Grandhe, B.K., et al., Multi wall carbon nanotubes assisted synthesis of YVO4:Eu3+ nanocomposites for display device applications. Composites Part B: Engineering, 2012. 43(3): p. 1192-1195.
48.Ozawa, L., Cathodoluminescence: Theory and applications. Kodansha (Tokyo, Japan and New York, N.Y.) 1990.
49.Park, J.H., et al., Cathodoluminescent and thermal properties of carbon nanotube–ZnS:Cu, Al phosphor composites. Solid State Communications, 2008. 148(11–12): p. 573-576.
50.Sakuma, S., et al., Effect of La and Zn addition on Y2O3:Eu phosphors. Applied Surface Science, 2005. 244(1–4): p. 458-460.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top