跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/25 18:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:牛靖華
研究生(外文):Ching-Hua Niu
論文名稱:AlGaN/ GaN HEMT元件特性分析
論文名稱(外文):Analysis of the characteristics of AlGaN/ GaN HEMT
指導教授:洪冠明洪冠明引用關係
指導教授(外文):Kuan-Ming Hung
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:42
中文關鍵詞:高電子遷移率場效電晶體
外文關鍵詞:HEMT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:2662
  • 評分評分:
  • 下載下載:214
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來,由於高頻高功率產品的需求與日俱增,因著氮化鎵化合物半導體有高電子飽和速度、熱穩定性佳、高崩潰電壓等優點成為當紅炸子雞。其中AlGaN/GaN HEMT具有高輸出功率,可廣泛應用在微波功率放大器。
本文所討論的HEMT一開始包括其發展與演進,分析氮化鎵優點及特性,其中包含了異質結構接面和極化效應,再來介紹HEMT動作原理,利用二維電子氣形成通道,使電子能夠以高遷移率移動。為了提高功率和耐高溫,結構主要包含傳統式閘極及梯形式閘極,在傳統式閘極部分,調整閘極位置、氮化鋁鎵層厚度、氮化鋁鎵層的鋁含量,來提高輸出功率;梯形式閘極部分,藉由電位和能帶的分析,改善傳統式閘極,容易崩潰的缺點,利用模擬軟體APSYS建立二維結構,設定相關參數,再利用理論模型求解其電性及熱能,包含了帕松方程式、漂移-擴散模型、載子遷移率模型、自恰方程、焦耳熱、複合熱、Thomson/Peltier 熱等等,計算出電流密度、電位、能帶、熱分佈,在最後再給結論。藉由結果能夠做為元件製程之參考。
In recent years, the demand of high-frequency high-power devices has gradually increased. The compound semiconductor of GaN with high electron saturation velocity, good thermal stability, high breakdown voltage has widely used in the fabrication of high-frequency high-power devices. AlGaN/GaN HEMT (High Electron Mobility Transistor) with high output power is a key device in microwave power amplifiers.
In this thesis, the author first introduces the recent development and evolution of GaN HEMT, its advantages and action principles. The free electrons induced by the polarization charges at the interface of AlGaN form a two-dimensional channel with high electron mobility. In order to increase its breakdown potential and improve temperature distribution, the ladder-gate structure is used. The tool of APSYS including the Poisson equation, drift-diffusion transport model, carrier mobility model and heating effect is applied to study the characteristics of GaN HEMT with the traditional and ladder gates. The calculated results show that the potential drop in the structure with a traditional gate is localized in a very thin region. This phenomenon makes the breakdown voltage lower according to a high field concentrated in a very thin region. The structure with ladder gate improves this phenomenon, a more uniform potential drop is observed. In addition, the temperature distribution for both structures according to the power consumption in the conducting channel is estimated. The ladder-gate structure has a more uniform distribution of temperature in comparison with traditional gate.
第一章 緒論 1
1-1 HEMT演進與發展 1
1-2研究動機 5
第二章 物理模型與理論計算 7
2-1漂移-擴散模型 7
2-2載子密度 9
2-3載子遷移率 10
2-4自恰方程 11
2-5熱能計算及熱分佈模型 13
2-5-1熱通量計算 13
2-5-2熱電勢和熱電流計算 14
2-5-3焦耳熱 14
2-5-4複合熱 15
2-5-5 Thomson/Peltier熱 15
2-5-6熱導率 16
第三章 結構與參數 18
3-1前言 18
3-2物質參數設定 18
3-3 元件結構 19
第四章 結果與討論 23
第五章 結論 41
參考文獻 42
[1] U. K. Mishra, P. Parikh, and Y.-F. Wu, Proceeding of the IEEE, Vol. 90, No. 6, Jun. 2002 (an overview).
[2]J. Han, A. G. Baca, R. J. Shul, C. G. Willison, L. Zhang, F. Ren, A. P. Zhang, G. T. Dang ,S. M. Donovan, X. A. Cao, H. Cho, K. B. Jung, C. R. Abernathy, S. J. Pearton, and R. G. Wilson, Appl. Phys. Lett. 74, 2702 (1999).
[3] For examples, R. Hofmann, V. Wagner, H.-P. Gauggel, F. Adler, P. Ernst, H. Bolay, A. Sohmer, F. Scholz, and H. C. Schweizer, IEEE Journal of Quantum Electronics 3, 456 (1997); S. Uchida, M. Takeya, S. Ikeda, T. Mizuno, T. Fujimoto, O. Matsumoto, S. Goto, T. Tojyo, and M. Ikeda, Semiconductor Laser Conference, 2002. IEEE 18th International 29 Sept.-3 Oct. 2002 pp.5 – 6.
[4] 陳隆建,發光二極體之原理與製程 (2006).
[5] S. M. Zse. Physics of semiconductor devices. John Wiley & Sons, 2nd edition, 1981. ISBN 978-0-471-67324-8.
[6] Bar-cohen, A., Kraus, A. D., and Davidson, S. F., Thermal frontiers in the design and packaging of microelectronic equipment, Journal of Mechanical Engineering, 105, 53-59, 1983
[7] G.K. Wachutka. Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling. IEEE Trans. CAD, 9(11): 1141–1149, 1990. doi:10.1109/43.62751.
[8] A. Marshak and K. van Vilet. Electrical current in solids with position dependent band structure. Solid State Electron., 21(2):417–427, 1978.doi:10.1016/0038-1101(78)90272-1.
[9] L. Liou, J. Ebel, and C Huang. Thermal effects on the characteristics of AlGaAs/GaAs heterojunction bipolar transistors using two dimensional numerical simulation. IEEE Trans. Elec. Dev., 40(1):35–43, 1993. doi:10.1109/16.249421.
[10]G. Martin, A. Botchkarev, A. Rockett, and H. Morkoc, “Valence-banddiscontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x-ray photoemission spectroscopy,” Appl. Phys. Lett., vol. 68, pp. 2541–2543, 1996.
[11]K. Domen, R. Soejima, A. Kuramata, and T. Tanahashi, “Electron overflow to the AlGaN p-cladding layer in InGaN/GaN/AlGaN MQW laser diodes,” MRS Internet J. Nitride Semicond. Res., vol. 3, pp. 2-1–2-5, 1998.
[12]J. Piprek and S. Nakamura, “Physics of high-power InGaN/GaN lasers,” IEE Proc.-Optoelectron., vol. 149, pp. 145–151, 2002.
[13]A. Kunold and P. Pereyra, “Photoluminescence transitions in semiconductor superlattices. Theoretical calculations for InGaN blue laser device,” J. Appl. Phys., vol. 93, pp. 5018–5024, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top