(18.206.187.91) 您好!臺灣時間:2021/05/19 01:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:張和忠
研究生(外文):Ho-chung Chang
論文名稱:以第一原理研究矽材中摻雜兩顆聚集碳原子導入電荷之鐵磁性
論文名稱(外文):Charge-induced Ferromagnetism in Two-carbon Cluster Silicon
指導教授:洪冠明洪冠明引用關係
指導教授(外文):Kuan-Ming Hung
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:46
中文關鍵詞:矽基板自旋電子碳聚集
外文關鍵詞:Si-basedspintronicsCarbon cluster
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本文的主要內容為使用第一原理為基礎的模擬軟體DMOL3與CASTEP,研究64顆矽原子所組成的超晶胞中摻雜兩顆聚集的碳原子。首先使用DMOL3軟體幾何優化,再將幾何優化後的晶體結構使用CASTEP軟體模擬分析能帶結構與局部狀態密度。矽塊材透過能隙修正,模擬的能隙值與實驗值相似,因此本研究的模擬數據參考價值極高。從模擬結果我們可以得知,在未導入電荷前,能帶結構與淨自旋態密度明顯沒有磁性產生,當此系統分別導入一個正電荷與負電荷時,就有鐵磁性的產生。為了提供實驗上的多樣性,我們將原本導入的正電荷與負電荷,利用硼原子與磷原子來取代,可以發現此結構依然是鐵磁體。這種現象不僅使矽基板的自旋電子金氧半場效應電晶體可能實現,而且也可以應用於矽基板的自旋電子元件與非揮發性磁性記憶體。
The main idea of this paper presents the first-principles study of two carbon clusters in silicon matrix with 64-atom supercell using simulation the tools of DMOL3 and CASTEP. After geometry optimization as implemented in DMOL3, the optimized structure is used to estimate the band structure and partial density of states using the tool of CASTEP. The band-gap energy of bulk Si agrees with the experimental value. From the simulated results, the band structure and density of states clearly show a non-magnetic property for a neutral system, but a ferromagnetic ordering in charged system. The boron and phosphorous atoms as an acceptor and donor to instead of positive charge and negative charge, respectively, also show ferromagnetic ordering. Our results reveal that both gating structure and doping system can provide ferromagnetic ordering. This phenomenon is useful in constructing Si-based spintronic devices and non-volatile magnetic memory.
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VII

第一章 緒論 1
1-1研究背景 1
1-2磁性半導體 1
1-3 材料特性 2
1-4研究動機 3
1-5論文架構 4
第二章 第一原理理論 5
2-1 多電子系統的計算 6
2-1-1 Born-Oppenheimer近似 6
2-1-2 Hartree近似 8
2-1-3 Hartree-Fock近似 9
2-2 密度泛函理論(Density Functional Theory, DFT) 10
2-2-1 Hohenberg-Kohn理論 10
2-2-2 Kohn-Sham理論 14
2-2-3 局部密度近似(Local Density Approximation, LDA) 18
2-2-4 廣義梯度近似(Generalized Gradient Approximation, GGA) 19
2-3 週期性系統 20
2-3-1 能帶理論計算 21
2-3-2 虛擬位能(Pseudopotential, PP) 22
第三章 結構模型與計算方法 25
3-1 晶體結構模型 25
3-1-1 純矽晶體模型 25
3-1-2 摻雜晶體模型 27
3-2 計算方法 29
3-2-1 計算流程與參數設定 30
3-2-2 能隙修正 30
第四章 結果與討論 32
4-1 摻雜結構 32
4-1-1 導入電荷 32
4-1-2 摻雜原子取代導入電荷 37
4-2 能隙修正 40
第五章 結論 44
參考文獻 45
[1] J. K. Furdyna, J. Appl. Phys. 64, R29 (1988).
[2] S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).
[3] G. A. Prinz, Phys. Rev. Lett. 54, 1050 (1985).
[4] J. Islam et al., J. Magnetism and Magnetic Materials 320, 571 (2008).
[5] S. Lee et al., Materials Today 12, 14 (2009).
[6] M. Zhao, F. Pan and L. Mei, Appl. Phys. Lett. 96, 012508 (2010).
[7] B. J. Nagare, S. Chacko and D. G. Kanhere, J. Phys. Chem. A 114, 2689 (2010).
[8] H. Ohno et al., science 281, 951 (1998).
[9] R. A. Smith, Semiconductor, 2nd ed., Cambridge Univ. Press, Londom (1979).
[10] TSMC, “TSMC Announces Move to 20nm Process”, Taiwan Semiconductor Manufacturing Company Limited (2010).
[11] TSMC, “14nm Chips on 450mm Wafers to Arrive in 2015”, Taiwan Semiconductor Manufacturing Company Limited (2011).
[12] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[13] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[14] W. Kohn, “Nobel Lecture: Electronic structure of matter-wave functions and density functional”, Rev. Mod. Phys. Vol. 71, No. 5 pp. 1253-1266 (1988).
[15] D. M. Ceperly and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
[16] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
[17] J. P. Perdew, and Y. Wang, Phys. Rev. B 33, 8800 (1986).
[18] S. K. Ma and K. Brueckner, Phys. Rev. 165, 18 (1968).
[19] D. J. W. Geldart and M. Rasolt, Phys. Rev. B 13, 1477 (1976).
[20] C. Kittel, Introduction to Solid State Physics, 8th ed., Wiley, New York (2005).
[21] D. R. Hamann, M. Schluter and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).
[22] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. of Mod. Phys. 64, 1045 (1992).
[23] B. Hammer, L. B. Hansen, J. K. Norskov, Phys. Rev. B 59, 7413 (1999).
[24] A. Seidl, A. Gorling, P. Vogl, and J. A. Majewski, Phys. Rev. B 53, 3764 (1996).
[25] L. Pauling, J. Am. Chem. Soc. 54, 3570 (1932).
[26] M. Zhao, F. Pan and L. Mei, Appl. Phys. Lett. 96, 012508(2010).
[27] P. Dev, Y. Xue and P. Zhang, Phys. Rev. Lett. 100, 117204(2008).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top