(44.192.66.171) 您好!臺灣時間:2021/05/18 01:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:鄒騰輝
研究生(外文):Teng-Huei Zou
論文名稱:二維光子晶體全光式元件之設計與分析
論文名稱(外文):Design and Analysis of All-Optical Devices based on Two-Dimensional Photonic Crystal
指導教授:吳曜東吳曜東引用關係
指導教授(外文):Yaw-Dong Wu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:101
畢業學年度:100
語文別:英文
論文頁數:75
中文關鍵詞:光子晶體
外文關鍵詞:photonic crystal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:578
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
我們討論二維光子晶體的特性來設計全光式元件。光子晶體是週期性的介電結構,它有一個重要的特性是光子能隙。由於此特性,使波長落在光子能隙中的光子無法通過光子晶體結構。
在本論文中,我們藉由平面波展開法與有限時域差分法來設計與分析光子晶體全光式元件。首先我們利用馬赫詹德干涉儀來設計兩個全光式邏輯閘,藉由改變耦合長度,它可以造成破壞性干涉和建設性干涉,所以我們可以利用此特性設計XOR閘、AND閘。另外我們利用環形共振腔和共振腔來設計三工器,我們提出的三工器可以分別分出波長1310 nm、1490 nm 、1550 nm,這三個波長的傳輸效率分別為99.8%、97.8%、97.3%,因此我們提出的三工器可應用於光纖到家 (fiber-to-the-home)系統中。最後我們利用多模干涉光子晶體波導來設計OR閘,當多模干涉光子晶體波導長度L=18a, 寬度W=14a 可以達到OR閘效果。
We discuss the characteristics of the two-dimensional photonic crystals (PCs) to design all-optical devices. PCs are periodic dielectric structure that has an important characteristic of the PCs are photonic bandgap (PBG). Due to the characteristic of PBG that wavelength within the bandgap cannot propagate through the crystal.
In this thesis, we design and analyze photonic crystal all-optical devices by using plane wave expansion (PWE) method and finite-difference time-domain (FDTD) method. First, we use the Mach-Zehnder interferometer (MZI) photonic crystal waveguide to design all-optical logic gates. Then we proposed two logic gate structures with MZI photonic crystal waveguide. By changing coupling length of one arm or two arms can cause the destructive interference and constructive interference. So we can use this characteristic to design XOR gate, AND gate. Besides, we use ring resonator and cavity to design triplexer. This triplexer can separate three wavelengths 1310 nm, 1490 nm, 1550 nm, and the transmission efficiency of three wavelengths are 99.8%, 97.8%, and 97.3%, respectively. Therefore, this triplexer can be used in fiber-to-the-home (FTTH) systems. Finally we use the multimode interference (MMI) photonic crystal waveguide to design OR gate. When MMI photonic crystal waveguide length L=18a, and width W=14a can be achieved function as OR gate.
Abstract............................................................I
Acknowledgment.....................................................IV
Contents............................................................V
List of Figures...................................................VII
List of Tables......................................................X
List of Symbols....................................................XI
Chapter 1 Introduction..............................................1
1.1 General Review of Photonic Crystals.............................1
1.2 Applications of Photonic Crystals...............................2
1.2.1 Mach-Zehnder Interferometer (MZI).............................2
1.2.2 Fiber-To-The-Home (FTTH)......................................3
1.2.3 Multimode Interference (MMI) ..................................3
1.3 Organization of Thesis..........................................4
Chapter 2 Simulation Method.........................................6
2.1 Plane Wave Expansion Method (PWE)...............................6
2.2 Finite-Difference Time-Domain Method (FDTD).....................9
Chapter 3 The All-Optical Logic Gates based on Mach-Zehnder Interferometer Photonic Crystal Waveguide..........................15
3.1 Introduction...................................................15
3.2 Analysis and Simulation........................................16
3.3 Summary........................................................18
Chapter 4 Novel Triplexer with High Transmission Efficiency based on Two-Dimensional Photonic Crystal...................................33
4.1 Introduction...................................................33
4.2 Analysis and Simulation........................................35
4.3 Summary........................................................36
Chapter 5 All-Optical OR Gate based on Multimode Interference Photonic Crystal Waveguide.........................................48
5.1 Introduction...................................................48
5.2 Analysis and Simulation........................................49
5.3 Summary........................................................51
Chapter 6 Conclusion and Future Researches.........................61
6.1 Summary........................................................61
6.2 Future Researches..............................................62
References.........................................................63
[1]E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., Vol.58, pp.2059-2062, 1987.
[2]S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., Vol.58, pp.2486-2489, 1987.
[3]T. Bada, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, “Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate,” IEEE J. Quantum Electronics, Vol.38, pp.743-752, 2002.
[4]N. Moll, and G. L. Bona, “Comparison of three-dimensional photonic crystal slab waveguides with two-dimensional photonic crystal waveguides: Efficient butt coupling into these photonic crystal waveguides,” J. Appl. Phys., Vol.93, pp.4986-4991, 2003.
[5]M. Loncar, J. Vuckovic, and A. Scherer, “Methods for controlling positions of guided modes of photonic-crystal waveguides,” J. Opt. Soc. Am. B, Vol.18, pp.1362-1368, 2001.
[6]J. Moosburger, M. Kamp, A. Forchel, U. Oesterle, and R. Houdre, “Transmission spectroscopy of photonic crystal based waveguides with resonant cavities,” J. Appl. Phys., Vol.91, pp.4791-4794, 2002.
[7]E. Waks, and J. Vuckovic, “Coupled mode theory for photonic crystal cavity waveguide interaction,” Opt. Express, Vol.13, pp.5064-5073, 2005.
[8]J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature, Vol.390, pp.143-145, 1997.
[9]H. Ren, C. Jiang, W. Hu, M. Gao, and J. Wang, “Photonic crystal channel drop filter with a wavelength-selective reflection micro-cavity,” Opt. Express, Vol.14, pp.2446-2458, 2006.
[10]T. Yu, J. Huang, N. Liu, J. Yang, Q. Liao, and X. Jiang, “Design of a compact polarizing beam splitter based on a photonic crystal ring resonator with a triangular lattice,” Appl. Opt., Vol.49, pp.2168-2172, 2010.
[11]M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” IEEE J. Lightwave. Tech., Vol.19, pp.1970-1975, 2001.
[12]J. Sharee, M. Nab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express, Vol.11, pp.2927-2939, 2003.
[13]M. Qiu, K. Azizi, Karisson, M. Swillo, and B. Jaskorzynska, “Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals,” Phys. Rev. B, Vol.64, pp.155113-155117, 2001.
[14]M. Agio, and C. M. Soukoulis, “Ministop bands in single-defect photonic crystal waveguides,” Phys. Rev. E, Vol.64, pp.055603(R), 2001.


[15]S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, CJM Smith, RM De La Rue, TF Krauss, U. Oesterle, and R. Houdre, “Mini-stopbands of a one-dimensional system: The channel waveguide in a two-dimensional photonic crystal,” Phys. Rev. B, Vol.63, pp.113311-113314, 2001.
[16]A. Martinez, A. Griol, P. Sanchis, and J. Marti, “Mach-Zehnder interferometer employing coupled-resonator optical waveguides,” Opt. Lett., Vol.28, pp.405-407, 2003.
[17]P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Experimental results on adiabatic coupling into SOI photonic crystal coupled-cavity waveguides,” IEEE Photon. Tech. Lett., Vol.17, pp.1199-1201, 2005.
[18]K. Srinivasan, and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express, Vol.10, pp.670-684, 2002.
[19]T. Yoshie, J. Vuckovic, A. Scherer, H. Chen, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett., Vol.79, pp.4289-4291, 2001.
[20]T. F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Stat. Sol., Vol.197, pp.688-702, 2003.
[21]R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: Low-loss bends and high Q cavities,” J. Appl. Phys., Vol.75, pp.4753-4755, 1994.
[22]S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B, Vol.62, pp.8212-8222, 2000.
[23]G. P. Nordin, S. Kim, J.Cai, and J. Jiang, “Hybrid integration of conventional waveguide and photonic crystal structures,” Opt. Express, Vol.10, pp.1334-1341, 2002.
[24]T. Sondergaard, and K. H. Dridi, “Energy flow in photonic crystal waveguides,” Phys. Rev. B, Vol.61, pp.15688-15696, 2000.
[25]S. Boscolo, M. Midrio, and T. F. Krauss, “Y junctions in photonic crystal channel waveguides: high transmission and impendence matching,” Opt. Lett., Vol.27, pp.1001-1003, 2002.
[26]M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett., Vol.77, pp.3902-3904, 2000.
[27]S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Elimination of cross talk in waveguide intersections,” Opt. Lett., Vol.23, pp.1855-1857, 1998.
[28]A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide:a proposal and analysis,” Opt. Lett., Vol.24, pp.711-713, 1999.
[29]M. Bayindir, and E. Ozbay, “Band-dropping via coupled photonic crystal waveguides,” Opt. Express, Vol.10, pp.1279-1284, 2002.
[30]T. T. Kim, S. G. Lee, H. Y. Park, J. E. Kim, and C. S. Kee, “Asymmetric Mach-Zehnder filter based on self-collimation phenomenon in two dimensional photonic crystals,” Opt. Express, Vol.18, pp.5384-5389, 2010.
[31]D. Dai, Z. Wang, and John E. Bower, “Considerations for the design of asymmetrical Mach-Zehnder Interferometers used as polarization beam splitters on a submicrometer silicon-on-insulator platform,” IEEE J. Lightwave. Tech., Vol.29, pp.1808-1817, 2011.
[32]M. Fetterman, C. P. Chao, and S. R. Forrest, “Fabrication and analysis of high-contrast InGaAsP-InP Mach-Zehnder modulators for use at 1.55 µm wavelength,” IEEE Photon. Tech. Lett., Vol.8, pp.69-71, 1996.
[33]H. W. Chen, Y. H. Kuo, and John E. Bower, “High speed hybrid silicon evanescent Mach-Zehnder modulator and switch,” Opt. Express, Vol.16, pp.20571-20576, 2008.
[34]Q. Zhu and B. Li, "Photonic crystal waveguide-based Mach-Zehnder demultiplexer," Appl. Opt., Vol.45, pp.8870-8873, 2006.
[35]D. A. May-Arrioja, and P. LiKam Wa, “Integrated electro-optic Mach-Zehnder switch realized by Zinc in-diffusion,” Proc. of SPIE, Vol.5622, pp.833-837, 2004.
[36]S. Lee, J. Park, K. Lee, D. Eom, S. Lee, and J. H. Kim, “All-Optical exclusive NOR logic gate using Mach-Zehnder Interferometer,” J. Appl. Phys., Vol.41, pp.L1155-L1157, 2002.
[37]J. W. Wu, and A. K. Sarma, “Ultrafast all-optical XOR logic gate based on a symmetrical Mach-Zehnder interferometer employing SOI waveguides,” Opt. Communications, Vol.283, pp.2914-2917, 2010.
[38]K. S. Lee, and S. K. Kim, “Conceptual design of spin wave logic gates based on a Mach-Zehnder-type spin wave interferometer for universal logic functions,” J. Appl. Phys., Vol.104, pp.053909-053912, 2008.
[39]Y. D. Wu, T. T. Shih, and M. H. Chen, “New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer,” Opt. Express, Vol.16, pp.248-257, 2008.
[40]D. S. Park, J. H. Kim, B. H. O, S. G. Park, E. H. Lee, and S. G. Lee, “Photonic crystal-based WDM filter for integrated optical triplexer transceiver,” Proc. of SPIE, Vol.6989, pp.69891S-69891S-8, 2008.
[41]D. S. Park, B. H. O, S. G. Park, E. H. Lee, and S. G. Lee, “Photonic crystal-based GE-PON triplexer using point defects,” Proc. of SPIE, Vol.6897, pp.689711-689711-9, 2008.
[42]Y. Shi, D. Dai, and S. He, “Proposal for an ultracompact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler,” IEEE Photon. Tech. Lett., Vol.19, pp.825-827, 2007.
[43]L. W. Chung, and S. L. Lee, “Multimode-interference-based broad-band demultiplexers with internal photonic crystals,” Opt. Express, Vol.14, pp.4923-4927, 2006.
[44]Tao Liu, Armis R. Zakharian, and Mahmoud Fallahi, “Multimode Interference-Based Photonic Crystal Waveguide Power Splitter,” IEEE J. Lightwave. Tech., Vol.22, pp.2842-2846, 2004.
[45]K. M. Ho, C. T. Chan, and C. M. Soukouils, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett., Vol.65, pp.3152-3155, 1990.
[46]K. M. Leung, and Y. F. Liu, “Photon band structures: The plane-wave method,” Phys. Rev. B, Vol.41, pp.10188-10190, 1990.
[47]Z. Zhang, and S. Satpathy, “Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell’s equations,” Phys. Rev. Lett., Vol.65, pp.2650-2653, 1990.
[48]B. C. Gupta, C. H. Kuo, and Z. Ye, “Propagation inhibition and localization of electromagnetic waves in two-dimensional random dielectric systems,” Phys. Rev. E., Vol.69, pp.06615-1-6, 2004.
[49]P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun., Vol.85, pp.306-322, 1995.
[50]K. S. Kunz, and R. J. Luebbers, “The finite difference time domain method for electromagnetics,” Boca Raton FL: CRC Press, 1993.
[51]G. S. Smith, M. P. Kesler, J. G. Maloney, and B. L. Shirley, “Antenna design with the use of photonic band-gap materials as all-dielectric planar reflectors,” Microwave and Opt. Tech. Lett., Vol.11, pp.169-174, 1996.
[52]J. G. Maloney, M. P. Kesler, B. L. Shirley, and G. S. Smith, “A simpled description for waveguiding in photonic bandgap materials,” Microwave and Opt. Tech. Lett., Vol.14, pp.261-266, 1997.
[53]C. Kittel, “Introduction to Solid State Physics,” introduction to Solid State Phys., 2004.
[54]K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas and Propagation, Vol.14, pp.302-307, 1966.
[55]W. Aroua, F. Ouerghi, S. Haxha, F. AbdelMalek, M. Mejatty, H. Bouchriha, and V. Haxha, “Analysis and optimisation of high-density photonic crystal devices in a subsystem by use of finite difference time domain,” IET Optoelectron, Vol.2, pp.10-15, 2008.
[56]J. Adhidjaja, and G. Horhmann, “A finite-difference algorithm for the transient electromagnetic response of a three-dimensional body,” Geophysics J. Int., Vol.98, pp.233-242, 1989.
[57]M. Celuch Marcysiak, and W. Gwarek, “Higher order modeling of media interfaces for enhanced FDTD analysis of microwave circuits,” in 24th European Microwave Conference, Vol.2, pp.1530-1535, 1994.
[58]D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett., Vol.90, pp.231114-231116, 2007.
[59]B. Miao, C. Chen, S. Shi, and D. W. Prather, “A high-efficiency in-plane splitting coupler for planar photonic crystal self-collimation devices,” IEEE Photon. Tech. Lett., Vol.17, pp.61-63, 2005.
[60]S. G. Johnson, and J. D. Joannopoulos, “Designing synthetic optical media: Photonic crystals,” Acta. Materialia, Vol.51, pp.5823-5835, 2003.
[61]H. Zou, G. Q. Liang, and H. Z. Wang, “Efficient all-optical dual channel switches, logic gates, half-adder, and half subtracter in one-dimensional photonic crystal heterostructure,” J. Opt. Soc. Am. B, Vol.25, pp.351-360, 2008.
[62]Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, and S. Kawanishi, “All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two dimensional photonic crystal slab,” Opt. Express, Vol.14, pp.1230-1235, 2006.
[63]Z. H. Zhu, W. M. Ye, J. R. Ji, X. D. Yuan, and C. Zen, “High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals,” Opt. Express, Vol.14, pp.1783-1788, 2006.
[64]T. Asia, Y. Amemiya, and M. Kosiba, “A Photonic-Crystal Logic Circuit Based on the Binary Decision Diagram,” in Proceeding of International Workshop on Photonic and Electromagnetic Crystal Structures, (Academic, Sendai, Japan), pp.T4-14, 2000.
[65]K. A. Shinya, T. Tanabe, E. Kuramochi, and M. Notomi, “All-optical switch and digital light processing, using photonic crystals,” NTT Tech. Rev., Vol.3, pp.61-68, 2005.
[66]Q. Liu, Z. Ouyang, C. J. Wu, C. P. Liu, and J. C. Wang, “All-optical half adder based on cross structures in two-dimensional photonic crystals,” Opt. Express, Vol.16, pp.18992-19000, 2008.
[67]A. Martinez, A. Griol, P. Sanchis, and J. Marti, “Mach-Zehnder interferometer employing coupled-resonator optical waveguides,” Opt. Lett., Vol.28, pp.405-407, 2003.
[68]T. P. White, C. Martijn de Sterk, R. C. McPhedran, and T. Huang, “Recirculation-enhanced switching in photonic crystal Mach-Zehnder interferometers,” Opt. Express, Vol.12, pp.3035-3045, 2004.
[69]He L. J., Xu. X. M., Liu N. H., Yu T. B., Fang L. G., and Liao Q. H., “Proposal of an Ultracompact Triplexer Using Photonic Crystal Waveguide with an Air Holes Array,” Chin. Phys. Lett., Vol.27, pp.084201-084201-4, 2010.
[70]Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature, Vol.425, pp.944-947, 2003.
[71]A. R. Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express, Vol.16, pp.12084-12089, 2008.
[72]J. Vuckovic, and Y. Yamamoto, “Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot,” Appl. Phys. Lett., Vol.82, pp.2374-2376, 2003.
[73]K. Hennessy, C. Reese, A. Badolato, C. F. Wang, A. Imamoglu, P. M. Petroff, E. Hu, G. Jin, S. Shi, and D. W. Prather, “Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots,” Appl. Phys. Lett., Vol.83, pp.3650-3652, 2003.
[74]F. C. Ndi, J. Toulouse, T. Hodson, and D. W. Prather, “Optically tunable silicon photonic crystal microcavities,” Opt. Express, Vol.14, pp.4835-4841, 2006.
[75]Z. Qiang, and W. Zhou, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express, Vol.15, pp.1823-1831, 2007.
[76]K. Kato, and Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” IEEE J. Sel. Topics Quantum Electron, Vol.6, pp.4-13, 2000.
[77]J. H. Song, K. S. Lee, and Y. Oh, “Triple wavelength demultiplexers for low-cost optical triplexer transceivers,” J. Lightw. Tech., Vol.25, pp.350-358, 2007.
[78]X. Li, G. R. Zhou, N. N. Feng, and W. P. Huang, “A novel planar waveguide wavelength demultiplexer design for integrated optical triplexer transceiver,” IEEE Photon. Tech. Lett., Vol.17, pp.1214-1216, 2005.
[79]C. Xu, X. Hong, and W. P. Huang, “Design optimization of integrated BiDi triplexer optical filter based on planar lightwave circuit,” Opt. Express, Vol.14, pp.4675-4686, 2006.
[80]T. Lang, J. J. He, and S. He, “Cross-order arrayed waveguide grating design for triplexers in fiber access networks,” IEEE Photon. Tech. Lett., Vol.18, pp.232-234, 2006.
[81]T. T. Shih, Y. D. Wu, and J. J. Lee, “Proposal for compact optical triplexer filter using 2-D photonic crystals,” IEEE Photon. Tech. Lett., Vol.21, pp.18-20, 2009.
[82]Zhihong Li, and Guifang Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Tech. Lett., Vol.18, pp.1341-1343, 2006.
[83]Y. A. Zaghloul, and A. R. M. Zaghloul, “Complete all-optical processing polarization-based binary logic gates and optical processors,” Opt. Express, Vol.14, pp.9879-9895, 2006.
[84]Y. Liu, F. Qin, Z. M. Meng, F. Zhou, Q. H. Mao, and Z. Y. Li, “All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs,” Opt. Express, Vol.19, pp.1945-1953, 2011.
[85]Y. Zhang, Y. Zhang, and B. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express, Vol.15, pp.9287-9292, 2007.
[86]J. Y. Kim, J. M. Kang, T. Y. Kim, and S. K. Han, “All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: Theory and experiment,” IEEE J. Lightwave. Tech., Vol.24, pp.3392-3399, 2006.
[87]T. A. Ibrahim, R. Grover, L. C. Kuo, S. Kanakaraju, L. C. Calhoun, and P. T. Ho, “All-optical AND/NAND logic gates using semiconductor micro resonators,” IEEE Photon. Tech. Lett., Vol.15, pp.1422-1424, 2003.
[88]T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gb/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electronic Lett., Vol.36, pp.1863-1864, 2000.
[89]H. Soto, J. D. Topomondzo, D. Erasme, and M. Castro, “All-optical NOR gates with two and three input logic signals based on cross-polarization modulation in a semiconductor optical amplifier,” Opt. Communication, Vol.218, pp.243-247, 2003.
[90]Y. Zhang, Z. J. Li, and B. J. Li, “Multimode interference effect and self-imaging principle in two-dimensional silicon photonic crystal waveguides for terahertz waves,” Opt. Express, Vol.14, pp.2679-2689, 2006.
[91]M. Zhang, N. Groothoff, A. C. Krüger, P. Shi, and M. Kristensen, “Direct slow-light excitation in photonic crystal waveguides forming ultra-compact splitters,” Opt. Express, Vol.19, pp.7120-7126, 2011.
[92]H. J. Kim, I. Park, B. H. O, S. G. Park, E. H. Lee, and S. G. Lee, “Self-imaging phenomena in multi-mode photonic crystal line-defect waveguides: Application to wavelength de-multiplexing,” Opt. Express, Vol.12, pp. 5625-5633, 2004.
[93]I. Park, H. S. Lee, H. J. Kim, K. M. Moon, S. G. Lee, B. H. O, S. G. Park, and E. H. Lee, “Photonic crystal power-splitter based on directional coupling,” Opt. Express, Vol.12, pp. 3599-3604, 2004.
[94]Y. Zhang, Z. Li, and B. Li, “Multimode interference effect and self-imaging principle in two-dimensional silicon photonic crystal waveguides for terahertz waves,” Opt. Express, Vol.14, pp. 2679-2689, 2006.
[95]L. B. Soldano, and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” IEEE J. Lightwave. Tech., Vol.13, pp.615-627, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top