(3.235.245.219) 您好!臺灣時間:2021/05/10 01:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蕭勝任
研究生(外文):Sheng-Jen Hsiao
論文名稱:輸電線路雷擊暫態特性及保護之研究
論文名稱(外文):A Study in Lightning Transient Characteristics and Protection for Transmission Lines
指導教授:陳明堂陳明堂引用關係
指導教授(外文):Ming-Tang Chen
學位類別:博士
校院名稱:國立高雄應用科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:150
中文關鍵詞:雷擊突波ATP-EMTPEGLA.弧角閃絡氧化鋅高科技總長度可靠度
外文關鍵詞:Lighting SurgesATP – EMTPEGLACoupling wire
相關次數:
  • 被引用被引用:1
  • 點閱點閱:872
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:1
台電公司輸電線路最主要電壓等級有345kV、161kV及69kV,至2011年12月底總長度約為16,898回線公里,其中地下電纜約3,485回線公里,由此可見,大部份屬暴露在大氣環境中之架空線路佔80%。因此,輸電線路遭受雷擊機會相對增加,並造成電壓驟降及保護開關跳脫事故,影響供電品質及可靠度,對高科技產業之經濟衝擊甚鉅,也為民生用電帶來諸多不便。目前台電公司雖有雷害防止管理計畫,但成效仍待評估;因此,本論文首先針對輸電線路,使用電磁暫態程式(Alternative Transient Program-Electromagnetic Transient Program, ATP-EMTP)進行模擬與分析,以瞭解雷擊突波、氧化鋅避雷器頻率響應、避雷器下引線對台架暫態等在不同系統參數下之特性。然後加入不同暫態保護方式,如改善支持物接地電阻、裝設耦合地線、裝設間隙型線路避雷器(Externally Gapped Line Surge Arrester, EGLA)、等探討其成效。此外,在研究期間適逢台電公司對於加壓線路(單端打開),全線裝之EGLA又因雷擊造成開路端空氣開關(Air-Breaker Switch,ABS)之弧角閃絡及氣體斷路器(Gas Circuit Breaker,GCB)燒損,並引起輸電系統電壓驟降事故,影響科學園區電力品質,於是再深入探討相關問題提出解決方案。
同時為解決混合式輸電線路,暫態突波故障問題,研發線上即時充油電纜監測油壓系統,隨時掌握油壓變化。依前述輸電線路雷擊暫態特性及保護對策之研究,本論文獲得重要成果如:避雷器下引線接地方式與耦合地線最佳配置;加壓線路在開路端靠線路側ABS增設避雷器防雷擊效應;不同系統參數對雷擊暫態效應;充油電纜即時油壓監測系統等,亦獲得台電公司的肯定,刻正實際應用推廣之中,可見本文對提升輸電線路供電品質及可靠度之貢獻。
The voltage ratings of the transmission line network of the Taiwan Power Company are categorized into 345kV, 161kV and 69kV. And overhead transmission lines, about 16,898 circuit-Km in length, account for 80% of the total length of the transmission lines, in addition to underground cables of 3,485 circuit-Km in length. It implies that most of Taipower’s transmission lines are exposed to atmosphere environments, and, thus, lightning is a potential major natural factor that might cause damages to the overhead transmission lines. Once a transmission line is struck by lightning, in serious cases, equipment and transmission line damages occur and an extensive area blackout is caused, even a system crash. In less serious cases, line tripping or instantaneous power failures are found. This is a serious economic problem to high-tech industries in Taiwan, and a source of public complaints in daily life. Taipower has been making efforts in this regard and adopts a lightning protection policy to reduce the adversary effects caused by lightning while the effectiveness is to be verified.
In this thesis, a software tool, the Alternative Transient Program - Electromagnetic Transient Program (ATP - EMTP) is used for simulation and analysis. It is employed to analyze the transient surge characteristics of transmission, to simulate metal oxide surge arrester models with fast surge impulse, following with a dynamic behavior, to simulate characteristics of arrester grounding lead at the platform steel frames, and to simulate different parameter effects on transient surge, etc. After the efforts, several transient protection methods are further used to clarify its specific effectiveness in the protection of transmission lines from lightning. These methods include: improvement of tower-footing resistance, installation of coupling ground wires, and installation of Externally Gapped Line Surge Arresters (EGLA).
During the period of this study, Taipower’s arresters installed at energized lines happened to have suffered lightning and caused overhead transmission line outages at the arc horn of post insulators of Air-Breaker Switch (ABS) and even caused a burning accident of Gas Circuit Breaker (GCB) at Taipower’s system. These once again caused voltage sag incidents and big economic loss.
To sum up, this study has proved to be very positive in the protection of transmission lines from lightning, in addition to prevention of the overhead and underground hybrid transmission system from transient over-voltage damages, and successful development of an oil-pressure on-line monitoring system. According to the analysis of lightning transient surge characteristics of the transmission line and the study of lightning protection policy in this paper, some positive results are reached. The results include: best allocation of arrester grounding leads and coupling wires, the installation of ABS at the open-ended point by the energized transmission line side on the effect of lightning protection, the influences of different system parameters on lightning transient surges, and successful development of an oil-pressure on-line monitoring system. These findings are accepted by Taipower, and in the process of extensive installation. This fact also shows that this paper will upgrade and benefit to the power supply quality and reliability of this state-run company’s transmission lines.
目 錄
中文摘要 I
英文摘要 III
誌 謝 VI
目 錄 VII
表 目 錄 IX
圖 目 錄 XIII
符號表 XXI
第一章 緒 論 1
1-1 研究背景與動機 1
1-2 國內外相關研究 2
1-3 研究方法與貢獻 4
1-4 論文內容概要 5
第二章 雷擊突波特性與保護 7
2-1 雷擊突波 7
2-1-1 雷擊突波類型 8
2-1-2雷突波特徵 9
2-2 台灣地區雷擊特徵 10
2-3 輸電線路雷擊保護 12
2-3-1 絕緣協調 12
2-3-2 耐雷設計 13
2-3-3 接地方式 17
2-3-4 輸電線路雷擊防護措施 19
2-4避雷器 22
2-5氧化鋅元件 30
2-5-1氧化鋅元件模型 31
2-5-2氧化鋅避雷器元件不同模型特性模擬與分析 36
2-5-3 IEEE改良式模型組合72KV及144KV避雷器 43
2-6避雷器台架接地引接方式之突波效應 45
2-6-1參數計算 46
2-6-2接地引線電感參數計算 47
2-6-3引線路徑雷擊效應 49
2-6-4 地網參數及模型建立 52
2-7 本章結論 59
第三章 架空輸電線路雷擊特性模擬與改善對策分析 61
3-1輸電鐵塔模組 61
3-2 輸電線路(含架空地線)模組 63
3-3加壓輸電線路之雷擊突波特性模擬與分析 64
3-4耦合地線之雷擊突波特性模擬與分析 77
3-4-1耦合地線之雷擊保護原理 78
3-4-2不同耦合方式對雷擊特性效應之分析 82
3-5不同參數對雷擊突波特性效應之模擬與分析 91
3-6不同改善策略對雷擊突波效應之模擬與分析 98
3-7本章結論 104
第四章 架空線路與地下電纜混合系統暫態特性分析與保護 106
4-1地下電纜接地系統種類 106
4-1-1單端接地 107
4-1-2 直接接地 108
4-1-3交錯接地 109
4-2地下電纜被覆保護裝置 109
4-3架空線路混接地下電纜系統暫態特性模擬與分析 112
4-3-1架空線路混接地下電纜系統模型建立 112
4-3-2電纜連接站避雷器引線系統之雷擊暫態模擬與分析 114
4-4充油電纜油壓監視系統之建置 124
4-4-1油壓閥盤油錶移位設計 125
4-4-2油壓監視系統連接至RTU直流輸出之設定 126
4-4-3 油壓監控系統安裝及測試 131
4-4-4油壓監測系統成效驗證 133
4-5 本章結論 135
第五章 結論及未來研究方向 137
5-1結論 137
5-2未來研究方向 138
參考文獻 140
[1] Taiwan Power Company, "Event Statistics of Mechanic and Electric Equipments in Taiwan Power System (2005~2011)," 2012. (in Taiwan)
[2] IEEE std. 1243-1997, IEEE Guide for Improving the Lightning Performance of Transmission Lines, IEEE Power Engineering Society, 26 June, 1997。
[3] S. S. Yen, "Theory and Practical of Lightning Protection Engineering," Feb. 2001. (in Taiwan)
[4] Taiwan Power Company, "Manual of Transmission Engineering," 1984. (in Taiwan)
[5] Surge arresters - Part 8: Metal-oxide surge arresters with external series gap (EGLA) for overhead transmission and distribution lines of a.c. systems above 1 kV, IEC 60099-8 Ed. 1.0, 2009.
[6] S. J. Hsiao and M. T. Chen, "Simulation and Analysis of Lightning Protection for an EHV Transmission Line," Proceedings of The International Conference on Electrical Engineering. No. O-075 July 6-10, 2008.
[7] NGK Insulators LTD, "External Gap Type Transmission Line Arrester For Advanced Lighting Protection," NGK Release No.105 2002.
[8] H. C. Wang, "Calculation and analysis of the effect of coupling ground wire to prevent lightning," Don Bay power technology, Vol, 1994, pp23-26.
[9]Electric Power Research Institute, "Chapter 12 - Transmission Line345KV and above Reference Book," Second Edition, 1992, pp.402–433.
[10] Insulation co-ordination –, Part 1: Definitions, principles and rules, IEC Std. 60071-1-2006.
[11] S. J. Hsiao and M. T. Chen, "Simulation and Analysis of Lightning Performance for 345kV XLPE Cable," International Conference on Power Systems Transients , Kyoto, Japan, June 3–6, 2009.
[12] Electromagnetic compatibility (EMC) – Part 4: Testing and measurement techniques – Section 5: Surge immunity test, IEC 61000-4-5, 1995.
[13] F. Heidler, "Traveling current source model for EMTP calculation," Proceeding of 6th International. Zurich Symposium and Technical Exhibition of Electromagnetic Compatibility, 1985, pp.157-162.
[14] A. J. Eriksson, "The Incidence of Lightning Strikes to Power Lines," IEEE Transactions on Power Delivery, Vol. 2, No.1, July 1987, pp. 859-870.
[15] Taiwan Power Research Institute, High Voltage Research Lab, http://10.52.200.200/w/.(in Taiwan)
[16] IEC 60071-2, Insulation co-ordination – Part 2: Application Guide, Third Edition, 1996.
[17] IEEE Standard for Insulation Coordination—Definitions, Principles, and Rules, IEEE Std. 1313.1-1996.
[18] Taiwan Power Company, "Manual of Transmission Line Maintenance," 1996. (in Taiwan)
[19] ABB Power Technology Products AB High Voltage Products, "Insulation withstand and clearances with EXLIM and PEXLIM surge arresters," 2001.
[20] Surge arresters –Part 4: Metal-oxide surge arresters without gaps for a.c. systems, IEC I 60099-4, 2009.
[21] Siemens AG, "Tasks and operating principle of MO arresters," 1st edition, 2001, pp.21-24.
[22] IEEE Working Group 3.4.11, "Modeling of metal oxide surge arresters," IEEE Transactions on Power Delivery, vol. 7, No 1, 1992, pp. 302-309.
[23] P. Pinceti and M. Giannettoni, "A simplified model for zinc oxide surge arresters," IEEE Trans. On Power Delivery, vol.14, No 2, 1999, pp. 393-398.
[24] F. Fernadez and R. Diaz, "Metal Oxide Surge Arrester Model for fast transient simulations," The International Conference on Power System Transients IPAT’01, Rio De Janeiro, Brazil, June 2001, pp 24-28.
[25] S.Trinand and T. Wichet, "The Lightning Arrester Modeling Using ATP-EMTP", Kasetsart J.(Nat.Sci) 42,2008,pp.156-164.
[26] L. Prikler and H. K. Høidalen, November, "ATPDraw for windows version 5.6," Preliminary Release No.1.0, 2009.
[27] W. H. Hayt and J. A. Buck, "Engineering Electromagnetics," sixth ed., Mc Graw Hill, 2001.
[28] IEEE Guide for the Connection of Surge Arresters to Protect Insulated, Shielded Electric Power Cable Systems, IEEE Std. 1299/C62,22.1, 1996.
[29] R. Zeng, X. Gong, J. He, B. Zhang, and Y. Gao, "Lightning Impulse Performances of Grounding Grids for Substations Considering Soil Ionization," IEEE Trans. on PWRD, vol.23, No.2, April 2008, pp 667-675.
[30] Taiwan Power Company, " Force Stress of Different Tower Types in 69kV, 161kV and 345 kV System," June 1974. (in Taiwan)
[31] M. Ishii, T. Kawamura, T. Kouno, E. Ohsaki, K. Shiokawa, K. Murotani, and T. Higuchi, "Multistory transmission tower model for lightning surge analysis," IEEE Trans. Power Delivery, vol. 6, July 1991, pp. 1327–1335.
[32] J. A. Martinez, B. Gustavsen and D. Durbak, "Parameter Determination for Modeling System Transients—Part I: Overhead Lines," IEEE Trans. Power Delivery, vol. 20, July 2005, pp 2038-2044.
[33] J. A. Martinez and F. C. Aranda, "Tower Modeling for Lightning Analysis of Overhead Transmission Line," Proceedings of 2005 IEEE Power Engineering Society General Meeting, Vol. 2, June 12-16, 2005, p.p.1212- 1217.
[34] T. Ito, T. Ueda, H. Watanabe and T. Funabashi, "Lightning Flashovers on 77-kV Systems: Observed Voltage Bias Effects and Analysis," IEEE Trans. on Power Delivery, vol. 18, April 2003, pp. 545-550.
[35] IEEE Design Guide for Improving the Lightning Performance of Transmission Lines, IEEE Std, 1243-1997.
[36] P. C. Tseng and W. C. Teng, "In The Design of a Single-Chip Tool Monitoring System for On-Line Turning Operation," Int J Adv Manuf Technol, 2004, pp. 404–414.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔