(3.227.0.150) 您好!臺灣時間:2021/05/06 12:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:宋國強
研究生(外文):Kuo-Chiang Sung
論文名稱:電腦斷層影像在三種不同治療計畫系統的重組體積干擾因素之分析
論文名稱(外文):Analysis of Confounding Factors in Volume Reconstruction with Multi-slices Spiral CT Simulation in Different Treatment Planning Systems
指導教授:陳文平陳文平引用關係李財福李財福引用關係
指導教授(外文):Wen-Ping ChenTsair-Fwu Lee
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:101
畢業學年度:100
語文別:中文
論文頁數:67
中文關鍵詞:電腦斷層切片厚度切面重疊因子治療計劃系統
外文關鍵詞:slice thicknesspitchcomputed tomographytreatment planning systemvolume reconstruction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:414
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
目的:在放射治療程序中,精確的目標描繪可以提高腫瘤的控制率,並且降低正常組織的副作用,因此電腦斷層影像重組體積的正確與否佔有重要的地位,本研究用不同形狀假體和多層螺旋電腦斷層掃描加上不同的治療計劃系統來評估造成重組體積的因素。
材料與方法:本實驗使用GE Lightspeed RT16電腦斷層掃描機,假體使用球體、圓柱體、正方體和四角錐等四種不同大小與形狀,模擬人體不同器官的掃描情況,掃描條件使用切面厚度為1.25 mm、2.5 mm、3.75 mm、5 mm四種臨床上較常使用的厚度,切片重疊因子分別為0.562、0.938、1.75,重組影像設定的Hounsfield Unit (HU) 為-400、-300、-200、-100、0。利用統計方法來探討誤差。實驗使用三種治療計劃系統:一、GE公司的Advantage SIMTM MD系統;二、BrainLab公司的iPLAN系統;三、Philips公司的Pinnacle3®系統。
結果:從研究結果我們可以發現影響重組體積的掃描條件為切面厚度、掃描物體的體積大小和重組體積的HU值,切片重疊因子和治療計劃系統的不同對於重組體積的影響並不明顯,在三種治療計劃系統裡,體積較大的假體不管使用何種切面厚度或切片重疊因子其重組體積的誤差都在5%之內,但在體積小的假體時,在任何掃描條件和重組條件下誤差都較體積大的假體來得明顯,如果在小的假體,使用較大的切面厚度為5mm,和不當的HU值,體積誤差甚至可以高達30%。
結論:本研究找出了影響重組體積的因素,在定義腫瘤的大小和評估危及器官的劑量上都提供了很大的幫助,以利日後在臨床上使用。
Purpose: Delineating precisely during the treatment planning procedure can improve the tumor control probability and reduce the normal tissue complication probability. Important issues have been raised concerning for the accuracy of volume reconstruction in computed tomography (CT) image for treatment planning. Different shaped phantoms, multi-slice spiral CT, and different treatment planning systems (TPS) are used to analyze the confounding factors in volume reconstruction.
Materials and methods: In this study, four phantoms with different shapes were used, i.e., sphere, cube, cylinder, and pyramid. Scanning thickness were set at 1.25mm, 2.5mm, 3.75mm, 5mm, the scanning pitch were set at 0.562, 0.938,1.75, and HU were selected at -400, -300, -200, -100, 0 HU for this experimental. Three different TPSs were used, i.e., 1) Advantage SIMTM MD (GE medical system, WI, USA ), 2) iPLAN (BrainLab, Heimstetten, Germany), 3) Pinnacle3® TPS (version 8.0m, Philips, Fitchburg, WI).
Results: We found that the confounding factors to affect the volume reconstruction are consisted by the slice thickness, volume size, and HU setting. The impact of pitch and the effect of different TPSs were not significantly. We found that the reconstruction error was kept within 5% for the larger phantoms (size). The reconstruction error become bigger for the smaller phantoms (size) in all experiments. In the small phantom (size), if the slice thickness is set at 5mm, the reconstruction error become larger even up to 30%.
Conclusion: We found the confounding factors in volume reconstruction. Reference could be provided for the target volume and the organs at risk definition in the medical practice for the future.
中文摘要 (i)
英文摘要 (iii)
致謝 (v)
目錄 (vi)
表目錄 (viii)
圖目錄 (ix)
公式目錄 (x)
第 一 章 緒論 (1)
1.1 研究動機 (1)
1.2 研究目的 (3)
1.3 研究問題與重要性 (3)
1.4 研究章節架構 (3)
第 二 章 相關文獻探討 (5)
2.1 前言 (5)
2.2 相關文獻 (5)
第 三 章 電腦斷層掃描儀 (7)
3.1 前言 (7)
3.2 電腦斷層介紹 (7)
3.3 電腦斷層掃描儀的演進 (8)
3.3.1 第一代電腦斷層掃描儀 (8)
3.3.2 第二代電腦斷層掃描儀 (8)
3.3.3 第三代電腦斷層掃描儀 (9)
3.3.4 第四代電腦斷層掃描儀 (10)
3.3.5 多層螺旋電腦斷層 (10)
3.4 電腦斷層基本定義 (11)
3.4.1 切片厚度 (11)
3.4.2 切片重疊因子 (11)
3.4.3 像素 (12)
3.4.4 立體像素 (12)
3.4.5 韓森費爾德單位 (13)
3.5CT 影像3D重建原理 (13)
3.6CT 掃描並形成CT圖像的過程 (13)
第 四 章 治療計劃系統 (14)
4.1 前言 (14)
4.2 放射治療計畫系統的介紹 (14)
4.2.1 放射治療計畫系統架構 (14)
4.2.2 擷取影像功能 (14)
4.2.3 數位影像處理功能 (15)
4.2.4 治療參數的設定與調整該功能 (15)
4.2.5 劑量計算核心程式 (15)
4.2.6 劑量分佈顯示與分析功能 (16)
4.2.7 獨立的劑量監控單位計算功能 (16)
4.3放射治療計畫系統執行流程 (16)
第 五 章 材料與方法 (18)
5.1 前言 (18)
5.2 實驗材料與設置 (18)
5.3 實驗流程 (19)
第 六 章 結果 (24)
6.1 前言 (24)
6.2 在切片厚度與受測物體體積大小的探討 (24)
6.3 在切片重疊因子的探討 (25)
6.4 在不同治療計劃系統間的探討 (26)
6.5 不同形狀假體重組體積誤差的探討 (27)
6.6 在不同HU值間的探討 (27)
第 七 章 討論 (28)
第 八 章 結論與未來展望 (34)
8.1 結論 (33)
8.2 未來展望 (33)
參考文獻 (33)
附錄A (40)
附錄B (52)
1.S Napel, M Marks, et al. CT angiography with spiral CT and maximum intensity projection. Radiology. 1992;185(2):607.
2.WA Kalender, W Seissler, et al. Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology. 1990;176(1):181.
3.O Gosling, R Loader, et al. A comparison of radiation doses between state-of-the-art multislice CT coronary angiography with iterative reconstruction, multislice CT coronary angiography with standard filtered back-projection and invasive diagnostic coronary angiography. Heart. 2010;96(12):922-6.
4.B Mijnheer, J Battermann, et al. What degree of accuracy is required and can be achieved in photon and neutron therapy? Radiotherapy and oncology. 1987;8(3):237-52.
5.R Prescribing, RPB Therapy. ICRU Report 50). International Commission on Radiation Units and Measurements.
6.A Wambersie, T Landberg. ICRU Report 62: Prescribing. Recording and Reporting Photon Beam Therapy (supplement to ICRU Report 50) ICRU News. 1999.
7.A Dutreix. When and how can we improve precision in radiotherapy? Radiotherapy and oncology: journal of the European Society for Therapeutic Radiology and Oncology. 1984;2(4):275.
8.J-K Wu, C-L Tsai, et al. The Analysis of Confounding Factors in Volume Reconstruction of 3DCRT with Spiral Mode CT Simulation. Journal of Medical and Biological Engineering. 2008;28(2):71-7.
9.K Taguchi, H Aradate. Algorithm for image reconstruction in multi-slice helical CT. Medical Physics. 1998;25:550.
10.M Mahesh, JC Scatarige, et al. Dose and pitch relationship for a particular multislice CT scanner. American Journal of Roentgenology. 2001;177(6):1273.
11.E Berthelet, M Liu, et al. CT slice index and thickness: Impact on organ contouring in radiation treatment planning for prostate cancer. Journal of Applied Clinical Medical Physics. 2003;4(4):365-73.
12.G Kantor, H Loiseau. Analysis of target volumes for gliomas]. Cancer radiothérapie: journal de la Société française de radiothérapie oncologique. 2005;9(4):230.
13.A Tinger, JM Michalski, et al. A critical evaluation of the planning target volume for 3-D conformal radiotherapy of prostate cancer. International Journal of Radiation Oncology* Biology* Physics. 1998;42(1):213-21.
14.J Smith, R Hawkins, et al. Effect of slice thickness on liver lesion detection and characterisation by multidetector CT. Journal of Medical Imaging and Radiation Oncology. 2010;54(3):188-93.
15.M Urie, M Goitein, et al. The role of uncertainty analysis in treatment planning. International Journal of Radiation Oncology* Biology* Physics. 1991;21(1):91-107.
16.B Ghaye, D Szapiro, et al. Peripheral Pulmonary Arteries: How Far in the Lung Does Multi-Detector Row Spiral CT Allow Analysis? 1. Radiology. 2001;219(3):629.
17.CH McCollough, FE Zink. Performance evaluation of a multi-slice CT system. Medical Physics. 1999;26:2223.
18.D Plewes, P Dean. The influence of partial volume averaging on sphere detectability in computed tomography. Physics in Medicine and Biology. 1981;26:913.
19.A Somigliana, G Zonca, et al. How thick should CT/MR slices be to plan conformal radiotherapy? A study on the accuracy of three-dimensional volume reconstruction. Tumori. 1996;82(5):470.
20.E Coche, S Pawlak, et al. Peripheral pulmonary arteries: identification at multi-slice spiral CT with 3D reconstruction. European radiology. 2003;13(4):815-22.
21.AR Wright, DA Collie, et al. Pulmonary nodules: effect on detection of spiral CT pitch. Radiology. 1996;199(3):837-41.
22.V Raptopoulos, PM Boiselle. Multi–Detector Row Spiral CT Pulmonary Angiography: Comparison with Single–Detector Row Spiral CT1. Radiology. 2001;221(3):606-13.
23.R Prabhakar, T Ganesh, et al. Impact of Different CT Slice Thickness on Clinical Target Volume for 3D Conformal Radiation Therapy. Medical Dosimetry. 2009;34(1):36-41.
24.PFJ New, WR Scott, et al. Computerized axial tomography with the EMI scanner. Radiology. 1974;110(1):109-23.
25.JTM Jansen, J Geleijns, et al. Calculation of computed tomography dose index to effective dose conversion factors based on measurement of the dose profile along the fan shaped beam. British journal of radiology. 1996;69(817):33-41.
26.B Ohnesorge, T Flohr, et al. Efficient object scatter correction algorithm for third and fourth generation CT scanners. European radiology. 1999;9(3):563-9.
27.JA Brink. Technical aspects of helical (spiral) CT. Radiologic Clinics of North America. 1995;33(5):825.
28.P Cadman, R Bassalow, et al. Dosimetric considerations for validation of a sequential IMRT process with a commercial treatment planning system. Physics in Medicine and Biology. 2002;47:3001.
29.L Xing, B Curran, et al. Dosimetric verification of a commercial inverse treatment planning system. Physics in Medicine and Biology. 1999;44:463.
30.IF Ciernik, E Dizendorf, et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. International Journal of Radiation Oncology* Biology* Physics. 2003;57(3):853-63.
31.江祥輝. 放射治療計畫功能軟體與品質保証系統建立. 2003.
32.M Lell, M Marwan, et al. Prospectively ECG-triggered high-pitch spiral acquisition for coronary CT angiography using dual source CT: technique and initial experience. European radiology. 2009;19(11):2576-83.
33.T Beyer, DW Townsend, et al. A combined PET/CT scanner for clinical oncology. Journal of Nuclear Medicine. 2000;41(8):1369-79.
34.YE Erdi, K Rosenzweig, et al. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiotherapy and oncology. 2002;62(1):51-60.
35.R Mohan, G Barest, et al. A comprehensive three-dimensional radiation treatment planning system. International Journal of Radiation Oncology* Biology* Physics. 1988;15(2):481-95.
36.M Goitein, M Abrams, et al. Multi-dimensional treatment planning: II. Beam's eye-view, back projection, and projection through CT sections. International Journal of Radiation Oncology* Biology* Physics. 1983;9(6):789-97.
37.S Nill. Development and application of a multimodality inverse treatment planning system (in English). Medical Physics. 2002;29:258.
38.DA Low, WB Harms, et al. A technique for the quantitative evaluation of dose distributions. Medical Physics. 1998;25:656.
39.NR Mollet, F Cademartiri, et al. High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation. 2005;112(15):2318-23.
40.D Schulze, M Heiland, et al. Radiation exposure during midfacial imaging using 4-and 16-slice computed tomography, cone beam computed tomography systems and conventional radiography. Dentomaxillofacial Radiology. 2004;33(2):83-6.
41.R Groell, R Rienmueller, et al. CT number variations due to different image acquisition and reconstruction parameters: a thorax phantom study. Computerized medical imaging and graphics. 2000;24(2):53-8.
42.QT YANG, F LI, et al. The measurement, spatial stereotaxis and clinical significance of optical canal: Multi-slice spiral CT study [J]. Chinese Journal Of Clinical Anatomy. 2009;27(6).
43.JM Kuhnigk, V Dicken, et al. Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans. Medical Imaging, IEEE Transactions on. 2006;25(4):417-34.
44.JF Barrett, N Keat. Artifacts in CT: Recognition and Avoidance1. Radiographics. 2004;24(6):1679-91.
45.F Verdun, R Meuli, et al. Image quality and dose in spiral computed tomography. European radiology. 1996;6(4):485-8.
46.A Vade, TC Demos, et al. Evaluation of image quality using 1:1 pitch and 1.5:1 pitch helical CT in children: a comparative study. Pediatric radiology. 1996;26(12):891-3.
47.A Polacin, WA Kalender, et al. Evaluation of section sensitivity profiles and image noise in spiral CT. Radiology. 1992;185(1):29.
48.WC Lin, CC Liang, et al. Dynamic elastic interpolation for 3D medical image reconstruction from serial cross sections. Medical Imaging, IEEE Transactions on. 1988;7(3):225-32.
49.P Santago, HD Gage. Statistical models of partial volume effect. Image Processing, IEEE Transactions on. 1995;4(11):1531-40.
50.C-H Yang, S-J Wang, et al. Factors Affecting Prostate Volume Estimation in Computed Tomography Images. Medical Dosimetry. 2011;36(1):85-90.
51.DJ Brenner, EJ Hall. Computed tomography—an increasing source of radiation exposure. New England Journal of Medicine. 2007;357(22):2277-84.
52.G Wang, MW Vannier. The effect of pitch in multislice spiral/helical CT. Medical Physics. 1999;26:2648.
53.S Achenbach, M Marwan, et al. High-pitch spiral acquisition: a new scan mode for coronary CT angiography. Journal of cardiovascular computed tomography. 2009;3(2):117-21.
54.M Cavalcanti, M Vannier. The role of three-dimensional spiral computed tomography in oral metastases. Dentomaxillofacial Radiology. 1998;27(4):203-8.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔