(34.237.52.11) 您好!臺灣時間:2021/05/18 14:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:郭信億
研究生(外文):Hsin-Yi Kuo
論文名稱:細料對高雄六龜地區粉質砂土力學性質之影響
論文名稱(外文):Effect of fines contents on the mechanic properties of silty sands at Liukuei area in Kaohsiung
指導教授:蕭達鴻蕭達鴻引用關係
指導教授(外文):Darn-Horng Hsiao
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:土木工程與防災科技研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:100
畢業學年度:100
語文別:中文
論文頁數:116
中文關鍵詞:高雄六龜粉質砂土細粒料含量力學性質
外文關鍵詞:the Kaohsiung Liukuei silty sandfines contentsmechanic properties
相關次數:
  • 被引用被引用:7
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本研究以高雄六龜砂土添加不同細粒料含量(FC=0%、FC=15%、FC=30%和FC=50%)針對其基本物性、微觀結構進行探討。並以控制相同乾土單位重(γd=17.07kN/m3)、尖峰軸差應力(Δσp=290kPa)和相對密度(Dr=30%)進行靜態三軸試驗、動力三軸試驗、共振柱試驗和單向度壓密試驗做進一步的整合、比較與分析,描述細粒料含量對於六龜地區砂土力學性質。
土壤基本物性試驗結果顯示,高雄六龜地區土壤依統一土壤分類法(USCS)在FC=0%時屬於級配不良砂土(SP)、FC=15%時為粉土質砂(SM)、FC=30%為黏土質砂土(SC-SM)和FC=50%是砂質粉土(CL-ML)。土壤比重皆為Gs=2.70。塑性指數(PI)分別為:NP、3.12、5.04和6.73。最小乾土單位重與最大乾土單位重分別採用相對密度與改良夯實試驗,求得FC=0%之γdmin=15.92kN/m3、γdmax=21.81kN/m3,FC=15%之γdmin=16.12kN/m3、γdmax=22.13kN/m3,FC=30%之γdmin=15.68kN/m3、γdmax=21.63kN/m3,FC=50%γdmin=13.86kN/m3、γdmax=21.32kN/m3。微觀結構經由SEM分析結果發現,現地粗粒料結構多呈角狀,而現地細粒料顆粒則近似圓球狀、頁片狀結構為主。
靜態三軸試驗結果顯示,以乾土單位重控制下,砂土添加愈多低塑性細粒料含量(FC=0%、FC=15%、FC=30%、FC=50%),則內摩擦角有降低趨勢。分別為: 41.27°、38.38°、33.42°、27.37°。
動態三軸試驗結果顯示,以乾土單位重控制下,砂土添加愈多低塑性細粒料含量,則反覆應力比亦呈現下降趨勢。FC=50%時反覆應力比(CSR)約為FC=0%的0.5倍。若以尖峰軸差應力控制下,砂土添加愈多低塑性細粒料含量,則反覆應力比先降後升趨勢。FC=50%時反覆應力比為FC=0%的1.06倍。
共振柱試驗結果顯示,以乾土單位重控制下,砂土添加愈多低塑性細粒料含量,剪力模數呈現下降情況,其值為36345kPa~56326kPa,而阻尼比有較高情況但所呈現的變化趨勢並不明顯。若試體是尖峰軸差應力組成,則砂土添加越多細粒料,則阻尼比D則是有遞減的情形;其原因研判試體添加愈多細粒料,其相對密度亦較高,試體也較緊密,故阻尼比D有呈現較低現象。
單向度壓密試驗結果顯示,砂土添加愈多細粒料(FC=0%、FC=15%、FC=30%、FC=50%),其砂土壓縮量有較大趨勢,e – log p'曲線幾乎是直線且斜率也較為陡峭,而壓縮指數(Cc)值亦有增加情況,其值分別是0.04、0.12、0.17和0.20。
The purpose of the study is first to study the effect of silty sands with different fines content (FC=0%, FC=15%, FC=30%, FC=50%) on the physical properties and related soil micro-structure. By three experimental conditions including the same dry unit weight (γd=17.07kN/m3), deviator stress (Δσp=290kPa), and density index (Dr=30%), the mechanics of sands at Liukuei in Kaohsiung were evaluated and discussed by means of the conventional triaxial test, cyclic triaxial test, resonant column test and consolidation test, etc on.
Test results show that the soils of FC=0% are belong to SP, SM for FC=15%, SC-SM for FC=30% and CL-ML for FC=50% according to Unified Soil Classification System (USCS). All the results show that specific gravities of the soils are hear 2.70. As for plasticity index, their PI were NP, 3.12, 5.04 and 6.73 for FC= 0%, 15%, 30% and 50% respectively. In addition, both of the minimum dry soil unit weight and the dry soil maximum unit weight were conducted by the methods of relative density test and improved compaction. Results show that of γdmin=15.92kN/m3 and γdmax=21.81kN/m3 are obtained for FC=0%, γdmin=16.12kN/m3 and γdmax=22.13kN/m3 for FC=15%, γdmin=15.68kN/m3 and γdmax=21.63kN/m3 for FC=30%, γdmin=13.86kN/m3 and γdmax= 21.32kN/m3 for FC=50%. The microstructure results measured by SEM analysis showed that the coarse particulate material structures are mostly angle status, but the fine particle materials particles are approximate spheres status page sheet structure dominated.
Conventional triaxial test results show that the sands with adding the more low plastic fines content (FC=0%, FC=15%, FC=30%, FC=50%), the trend of the angle of internal friction is apparently decreasing from control of the same dry unit weight. Their angle of internal friction is 41.27°, 38.38°, 33.42°, and 27.37° for FC= 0%, 15%, 30% and 50 % respectively.
Cyclic triaxial test results show that sands with adding the more low plastic fines content, cyclic stress ratio also show the decreasing trend from control the same dry unit weight. The cyclic stress ratio (CSR) for FC=50% is about 0.5 times those of the soils for FC=0%. Meantime adding more low plastic fines content, the cyclic stress ratio will decrease for testing trend from controlling the same deviator stress. The cyclic stress ratio for FC=50% is 1.06 times those of the soils for FC=0%.
Resonant column test results show that sands with the more low plastic fines content, the shear modulus show decreasing trend from control the same dry unit weight. Their results show that a higher damping ratio can be found in the range of 36345 kPa-56326 kPa, but it is not obvious. However adding the more low plastic fines content, the damping ratio will display decreasing trend for same deviator stress. The reason is that the density index is also higher for specimens with more fines contents,, the specimens displayed more dilatancy behavior, so that the damping ratio (D) will show lower. At last consolidation test results show that the sands with adding the more low plastic fines content, the sand compression trend will be more apparent.
摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
圖目錄 x
表目錄 xv
符號表 xvi
第一章 緒論 1
1.1研究動機 1
1.2研究目的 1
1.3 研究內容 3
1.4 研究流程 4
第二章 文獻回顧 6
2.1土壤液化之定義與發生機制 6
2.2 影響液化之因素 7
2.3控制指標參數 10
2.4臨界狀態(Critical State) 11
2.5細粒料含量對土壤反覆應力比之影響 11
2.5.1以試體相對密度作為控制參數 12
2.5.2試體整體孔隙比作為控制參數 13
2.5.3以試體砂結構孔隙比作為控制參數 15
2.5.4細粒料塑性性質對動態強度之影響 16
2.6土壤動態特性 19
2.6.1動力三軸試驗原理 19
2.6.2計算土壤的動態性質 21
2.6.3利用試驗結果計算土壤動態性質 21
2.6.4共振柱試驗原理 24
2.6.5共振柱水平扭轉波傳理論之基本假設 24
2.6.6共振柱之動態 25
2.7近年學者研究細粒料對砂土力學性質之影響 27
第三章 研究方法 33
3.1研究區域概況 33
3.2試驗土樣 35
3.3試驗設備與試驗方法 35
3.3.1靜三軸試驗 35
3.3.2靜三軸試驗方法與試驗準備 37
3.3.3動力三軸試驗 39
3.3.4動力三軸試驗方法與試驗準備 43
3.3.5共振柱試驗 45
3.3.6共振柱試驗方法與試驗準備 49
3.3.7單向度壓密試驗 49
3.3.8單向度壓密試驗方法與試驗準備 50
第四章 試驗結果分析與討論 52
4.1試驗土樣基本物性 52
4.2靜態三軸試驗結果分析與討論 55
4.2.1三軸壓密排水與不排水結果 56
4.2.2軸差應力-軸向應變關係 58
4.2.3體積變化量-軸向應變關係 59
4.2.4孔隙水壓力 59
4.2.5凝聚力c'值與內摩擦角 64
4.2.6臨界狀態應力比 65
4.3動態三軸試驗結果分析與討論 74
4.3.1細粒料含量對土壤反覆應力比之影響 74
4.3.2 試體承受反覆應力下的變形行為 82
4.3.3試體承受反覆應力下孔隙水壓力之變化 86
4.3.4砂結構孔隙比與液化阻抗之關係 87
4.3.5內摩擦角與反覆應力比之關係 90
4.3.6 應力比M值與液化阻抗之關係 90
4.3.7 (N1)60與液化阻抗之關係 91
4.4共振柱試驗結果分析與討論 94
4.4.1細粒料含量與剪力模數影響 95
4.4.2剪應變振幅與剪力模數之關係 96
4.4.3剪力模數曲線比較 96
4.4.4細粒料含量與阻尼比影響 100
4.4.5阻尼比曲線之比較 100
4.4.6剪力波速 103
4.5單向度壓密試驗結果 104
第五章 結論與建議 108
5.1結論 108
5.2建議 109
參考文獻 110
1.石同生、劉彦求、林偉雄、林燕慧、盧詩丁、張徽正,2003,六龜斷層,經濟部中央地質調查所施政計畫報告。
2.黃信智,2003,細料含量與非均向壓密對高雄前鎮河岸邊土壤液化現象之影響,國立高雄應用科技大學,土木工程與防災科技研究所,碩士論文。
3.鍾浩群,2008,實驗室低壓灌漿砂土動態行為,國立高雄應用科技大學,土木工程與防災科技研究所,碩士論文。
4.黃志強,2011,水玻璃對砂土添加水泥漿液動態性質之影響,國立高雄應用科技大學,土木工程與防災科技研究所,碩士論文。
5.戴源昱,2007,台灣西南部粉土質細砂CRR與qc關係之標定,國立交通大學,土木工程學系碩士班,碩士論文。
6.游家豪,2007,低塑性細料對粉質砂土動態性質之影響,國立成功大學,土木工程系研究所,碩士論文。
7.Mogami, T., Kubo, K., 1953, “The Behaviour of Soil During Vibration,” Proceedings of the 3rd International Conference on Soil Mechanics and Foundation Engineering, Vol..1, .pp. 152-153.
8.Seed, H. B., 1976, “Evaluation of Soil Liquefaction Effects on Level Ground During Earthquakes,”Liquefaction Problems in Geotechnical Engineering Session on Soil Dynamics Committee of Geotechnical Engineering Division, ASCE, .pp. 1-104.
9.Ishihara, K., 1993, “Liquefaction and Flow Failure During Earthquakes,” Geotechnique, Vol. 43, No.3, pp. 351-415.
10.李俊儒,2007,不同試體準備方法對沉泥質砂靜態及動態行為之研究,國立高雄應用科技大學,土木與防災科技研究所碩士論文。
11.Seed, H. B., Idriss I. M., 1971, “Simplified Procedure for Evaluating Soil Liquefaction Potential,” Soil Mechanics and Foundation Division, ASCE, Vol. 97, No. SM9, pp. 1249-1273.
12.Castro, G., Poulos, S.,1977,“Factors affecting liquefaction and cyclic mobility,”Journal of Geotechnical Engineering, ASCE, Vol. 103, No. GT6, pp. 501-516.
13.Chaney, R. C., 1978, “Saturation Effects on the Cyclic Strength of Sands,” Earthquake Engineering and Soil Dynamics, ASCE, Vol. 1, pp. 342-358.
14.Hazirbaba, K., Rathje, E. M., 2009,“Pore Pressure Generation of Silty Sands due to Induced Cyclic Shear Strains,” Journal of Geotechnical Engineering, ASCE, Vol. 135, No. 12, pp. 1892-1905.
15.Seed, H. B., Tokimatsu, K., Harder, L. F., and Chung R. M., 1985,“The Influence of SPT Procedures in Soil Liquefaction Resistance Evaluation,” Journal of Geotechnical Engineering, ASCE, Vol. 111, No. 12, pp.1425-1445.
16.Carraro , J. A. H., Bandini, P., and Salgado, R., 2003,“Liquefaction Resistance of Clean and Nonplastic Silty Sands Based on Cone Penetration Resistance”Journal of Geotechnical Engineering, ASCE, Vol. 129, No. 11, pp. 965-976.
17.林智偉,2006,無塑性細料對砂質土壤液化阻抗之研究,國立成功大學,土木工程系研究所,碩士論文。
18.Polito, C. P., Martin, J. R., 2001,“Effects of Nonplastic Fine on Liquefaction Resistance of Sands,” Journal of Geotechnical and Geoevironmental Engineering, ASCE, pp. 408-414.
19.Xenaki, V. C., Athanasopoulos, G. A., 2003,“Liquefaction Resistance of Sand-silt Mixtures:An Experimental Investigation of the Effect of Fines,” Soil Dynamics and Earthquake Engineering, Vol. 23, No. 3, pp.183-194.
20.孫家雯,2001,砂土細粒界定對液化強度之影響,國立台灣大學,土木工程系研究所,碩士論文。
21.許家豪,2003,不同粒徑細粒料對土壤液化阻抗影響之研究,國立成功大學,土木工程系研究所,碩士論文。
22.李政融,2010,動力三軸試驗探討含細料粉質砂土之動態行為,國立成功大學,土木工程學研究所,碩士論文。
23.Seed, H. B., Lee, K. L., 1966, “Liquefaction of Saturated Sands During Cyclic Loading,” Soil Mechanics and Foundation Division, ASCE, Vol. 92, No. 6, pp. 105-134.
24.王金山,2004,共振柱試驗之土壤動力性質,國立中央大學,土木工程學系,
碩士論文。
25.Estelle, D. R., Irini, D. M., Richard, C., Daniel, G., 2004, “Shear Modulus and Damping Ratio of Grouted Sand,” Soil Dynamics and Earthquake Engineering, Vol.24, pp. 461-471.
26.Prakash, S., 1981, Soil Dynamics, McGraw-Hill, Inc., United States of America.
27.Kim, D., Sagong, M., Lee, Y., “Effects of Fine Aggregate Content on the Mechanical Properties of the Compacted Decomposed Granitic Soils, No. 19, pp.189-196.
28.Jonathan, D. B., Rodolfo, B. S., 2006, “Cyclic Assessment of the Liquefaction Susceptibility of Fine-Grained Soils,” Journal of Geotechnical Engineering, ASCE, Vol. 132, No. 9, pp. 1165-1177.
29.Mehdi, D., Ellen, M. R., Kenan, H., Mirhosseinid, S. M., 2008,“The Effect of Plastic Fines on the Pore Pressure Eeneration Characteristics of Saturated Sands,” Soil Dynamics and Earthquake Engineering, No. 28, pp.376–386.
30.Abedi, M., Yasrobi, S.S., 2011,“Effects of Plastic Fines on the Instability of Sand,” No. 30, pp.61-67.
31.Baziar, M. H., Sharafi, H., 2011, “Assessment of Silty Sand Liquefaction Potential Using Hollow Torsional Tests -An Energy Approach,” Soil Dynamics and Earthquake Engineering, No. 31, pp.857-865.
32.Skempton A. W., 1986, “Standard Penetration Test Procedures and The Effects in Sands of Overburden Pressure, Relative Rensity, Particle Size, Ageing and Overconsolidation,” Geotechnique 36, No. 3, pp. 425-447.
33.張晉傑,2011,2009年莫拉克颱風引致高雄下新開部落土石流堆積長度之研究,國立高雄應用科技大學,土木與防災科技研究所,碩士論文。
34.行政院經濟部中央地質調查所,2012,http://www.moeacgs.gov.tw/
35.黃安斌,2009,「台灣中西部粉/砂土壤液化行為之研究心得」,地工技術,第121期,第33-44頁。
36.施慶煌,低塑性粉質砂土之原狀與重模試體動態性質之探討,2009,國立成功大學,土木工程系研究所,碩士論文。
37.Yang, S. L., Sandvenb, R., Grandeb, L., 2006,“Instability of Sand–silt Mixtures,” Soil Dynamics and Earthquake Engineering, No. 26, pp.183–190.
38.Das, B. M., 2007,「Principles of Geotechnical Engineering」,黃安斌譯,東華書局。
39.Thevanayagam, S., 2000,“Liquefaction Potential and Undrained Fragility of Silty Soils,”Proceedings of 12th World Conference on Earthquake Engineering. Auckland, New Zealand, pp 1-8.
40.廖元憶,2005,台灣西南沿海高細粒料含量砂土的探討,國立成功大學,土木工程系研究所,碩士論文。
41.卿建業、陳奕竹,2008,各種大臺北地區土壤參數間之關聯性,2008工程地質探勘資料庫系統成果發表暨研討會。
42.Seed, H. B., Idriss, I. M., 1970, “Soil Modulus and Damping Factors for Dynamic Response Analyses,” Report No. EERC 70-10, Earthquake Engineering Research Center, University of California.
43.Iwasaki, T., Tatsuoka, F., “Effects of Grain Size and Grading on Dynamic Shear Moduli of Sands,” Soils and Foundations, JSSMFE, Vol.17, No. 3, pp. 19-35.
44.陳志瑋,2010,細料含量對乾粉質砂土動態行為影響之研究,國立成功大學,土木工程系研究所,碩士論文。
45.Chang, T. S., Hwang, H., Ng, K. W., 1989, “Subsurface Conditions in Memphis and Shelby County,” Tennessee. NCEER-89-0021, Buffalo, NY.
46.Kokusho, T., 1980,“Cyclic Triaxial Test of Dynamic Soil Properties for Wide Strain Range,”Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, Vol. 20, No. 2, pp. 45-60.
47.沈茂松,1988,「實用土壤學試驗」,高雄文成書局。
48.朱瑞陽,2009,麥寮砂應力歷史正常化行為之量測,國立交通大學,土木工程學系碩士班,碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top