(3.235.139.152) 您好!臺灣時間:2021/05/11 13:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:李任翔
研究生(外文):Ren-shang Li
論文名稱:彎曲伸張型超音波傳感器之設計與分析
論文名稱(外文):Design and Analysis of Flextensional Ultrasonic Transducer
指導教授:何信宗 教授
指導教授(外文):Shin-Tzong Ho
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:89
中文關鍵詞:彎曲伸張型傳感器鈸型傳感器振動分析
外文關鍵詞:Flextensional TransducerCymbal TransducerVibration analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:389
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的是要開發製作一個適合於水或空氣介質中進行超音波傳送與接收的傳感器。在過去的研究中,已經有文獻將彎曲伸張型超音波傳感器的組成結構分類為Class I到Class V等五種。經過檢討之後,我們發現其中的Class IV和Class V型傳感器結構特性較適合於我們的應用需求。為了降低開發成本,在實際製作之前,我們先利用有限元素分析軟體ANSYS,對彎曲伸張型超音波傳感器進行結構的阻抗分析與位移頻率響應,並且探討彎曲伸張型傳感器的尺寸參數與傳感器特性之間的關係。
在傳感器的模擬分析中,我們提出一種新型Class IV的半橢圓環型傳感器進行探討,並利用有限元素軟體的模擬分析結果,比較半橢圓環型傳感器的尺寸參數與其共振頻率和位移量的關係。而在Class V彎曲伸張型傳感器的分析中,我們檢討了月牙型、鈸型和球-鈸型傳感器等三種結構特性,並將這三種傳感器置於相同條件下,根據其阻抗分析和位移頻率響應的模擬結果,比較這三種傳感器的優缺點。在本文中也比較了半橢圓環型和鈸型傳導器的阻抗特性和位移頻率響應,在相同元件尺寸時,這兩種類傳感器各別的特性與優勢。實驗中,針對半橢圓環型傳感器作頻率和位移響應量測,與模擬分析作比較與探討傳感器的特性。
The objective of this paper is to develop a flextensional ultrasonic transducer, which is suitable to be used in the water or air medium as a transceiver. In the literature, there were some papers studied the flextensional transducers and divided the transducers from Class I to Class V. Among these transducers, we found that Class IV and Class V are suitable for our application. Therefore, the finite element software ANSYS are used in this study to analyze the structure of the transducer for the design of the flextensional transducers. The impedance analysis and displacement response of the transducers were conducted. In addition, the relations between the characteristics of the flextensional transducers and the design parameters were discussed.
A semi-elliptical transducer was developed and analyzed in the Class IV transducers and three types of Class V transducers were analyzed. The cymbal transducer was compared with the semi-elliptical transducer. The characteristics of Class IV and Class V transducers were discussed in this paper. Finally, we tested and measured the characteristics of Class IV transducer.
中文摘要------------------------------------------------------- i
英文摘要 ------------------------------------------------------- ii
誌謝------------------------------------------------------------ iii
目錄------------------------------------------------------------ iv
表目錄--------------------------------------------------------- vi
圖目錄---------------------------------------------------------- vii
符號說明 ------------------------------------------------------- x
一、 序論
1.1 前言 ------------------------------------------- 1
1.2 文獻回顧 ---------------------------------------- 4
1.3 研究動機與目的 ---------------------------------- 18
二、 理論分析
2.1 壓電方程式 -------------------------------------- 19
2.2 半橢圓環型傳感器的振動分析 ------------------------ 21
2.3 壓電原盤振動分析 --------------------------------- 23
2.4 鈸型傳感器縱向位移分析 -------------------------- 29
三、 彎曲伸張型傳感器之模擬與分析
3.1 壓電材料模擬分析 -------------------------------- 35
3.2 半橢圓環型傳感器結構與設計 ----------------------- 38
3.3 半橢圓環型傳感器模擬與分析 ----------------------- 41
3.3.1 半橢圓環型傳感器特性與尺寸參數的關係 ------- 41
3.3.2 半橢圓環型傳感器與金屬材質的關係 ----------- 42
3.4 Class V彎曲伸張型傳感器 ------------------------- 44
3.5 鈸型傳感器的尺寸參數之特性影響 -------------------- 48
3.6 半橢圓環型與鈸型傳感器之特性比較 ------------------ 49
四、 半橢圓環型傳感器之實驗量測
4.1 實驗流程與介紹 ---------------------------------- 53
4.2 半橢圓環型傳感器之結構設計 ----------------------- 56
4.3 半橢圓環型傳感器的頻率響應量測 ------------------- 61
4.3.1 半橢圓環型傳感器在無固定情況之頻率響應 ----- 61
4.3.2 半橢圓環型傳感器在固定情況下之頻率響應 ----- 61
4.4 半橢圓環形傳感器之位移響應量測 ------------------- 62
4.5 半橢圓環型傳感器之位移的暫態響應實驗 -------------- 68
4.6 半橢圓環型傳感器之水中阻抗特性 -------------------- 71
五、 結果與討論
5.1 結果與討論 -------------------------------------- 74
5.2 未來展望 ---------------------------------------- 75
參考文獻 ------------------------------------------------------- 76
參考文獻

[1]K. D. Rolt, 1990, “History of The Flextensional Electroacoustic Transducer”, Acoustical Society of America, vol. 87, Issue 3, pp. 1340-1349.
[2]R. E. Newnham, D. C. Markley, R. J. Meyer, W. J. Hughes, A. C. Hladky-Hennion, and J. K. Cochran, Jr., 2004 , “Multimode Underwater Transducers,” Amer. Ceram. Bull., vol. 83,no. 9, pp 25-28.
[3]鄭振東,1999,超音波工程,全華出版社。
[4]J. Ahmad, D.T.J. Francis, R.F.W. Coates, 1995, “A Fluid-Filled Flextensional Device for Ocean Acoustic Tomography,” OCEANS '95. MTS/IEEE, vol. 3, pp 2021-2026.
[5]A.-C. Hladky-Hennion, A.E. Uzgur, D.C. Markley, J.K. Cochran, R.E. Newnham, 2007, “Miniature Multimode Monolithic Flextensional Transducers,” IEEE Transdcuers on Ultrasonics, Frroelectrics, and Frequency Control, vol. 54, no. 10, p.p.1992-2000.
[6]G.A. Brigham, 1973, “Analysis of The Class-IV Flextensional Transducer by Use of Wave Mechanics.” Acoust. Soc. Am. , vol. 56, Issue 1, pp. 31-39.
[7]Z. Wang., R. Hongyan, X. Luo, W. Zheng, L. Hou, B. Wang, A. Cuschieri, 2010, “A Micropower Miniature Piezoelectric Actuator for Implantable Middle Ear Hearing Device,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 2, pp 452-458.
[8]A. Dogan, S. Yoshikawa, K. Uchino, and R.E. Newnham , 1994,“The Effect of Geometry on The Characteristics of The Moonie Transducer and Reliability Issue”, IEEE Proceedings of Ultrasonics Symposium 1994, vol. 2 , pp.935-939.
[9]J.F. Tressler, A. Dogan, J.F. Fernandez, J.T. Fielding, K. Uchino, R.E. Newnham, 1995 ,“Capped Ceramic Hydrophones,” IEEE Proceedings of Ultrasonics Symposium 1995, vol. 2, pp. 897-900.
[10]A. Dogan , K. Uchino , R.E. Newnham , 1997, “Composite Piezoelectric Transducer with Truncated Conical Endcaps “Cymbal”” , Ultrasonics, Ferroelectrics and Frequency Control, IEEE , vol. 44, Issue 3 , pp. 597-605.
[11]J.F. Tressler, W. Cao, K. Uchino,1998 , “Finite Element Analysis of the Cymbal-Type Flextensional Transducer,” IEEE Transactions on Ultrasonics, Ferrolectrics, and Frequency Control, vol. 45, no. 5, pp.1363-1369.
[12]Y. Ke, T. Guo, J. Li, 2004, “A New-Style, Slotted-Cymbal Transducer with Large Displacement and High Energy Transmission,” IEEE Transactions on Ultrasonics, Ferrolectrics, and Frequency Control, vol. 51, no. 9, pp. 1171-1177.
[13]H. Kim, S. Priya, H. Stephanou, K. Uchino, 2007, “Consideration of Impedance Matching Techniques for Efficient Piezoelectric Energy Harversting,” IEEE Transactions on Ultrasonics, Ferrolectrics, and Frequency Control, vol. 54, no. 9, pp. 1851-1859.
[14]S. Wu, Q. Zhang, Z. Huang, J. Xiong, 2009, “Research on Frequency Characteristics of Spherical Cymbal,” IEEE International Conference on Measuring Technology and Mechatronics Automation, vol.1, pp.514-518.
[15]S. Ho , 2007, “ Modeling of a Disk-Type Piezoelectric Transformer” , IEEE Transactions on Ultrasonics, Ferrolectrics, and Frequency Control, vol. 54, no. 10, pp.2110-2117.
[16]王勛成,1997,有限單元法基本原理和數值方法,清華大學書版社。
[17]栾桂冬,1990,壓電換能器和換能器陣,上冊,北京大學出版社。
[18]胡富傑,2010,半橢圓型超音波馬達之設計,國立高雄應用科技大學,碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔