(3.238.96.184) 您好!臺灣時間:2021/05/10 10:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:朱世華
研究生(外文):Shih-hua Chu
論文名稱:以電化學沉積碲-銻-鉍薄膜於ITO玻璃基板之製備及熱電性質研究
論文名稱(外文):Thermoelectric Properties of Bi-Sb-Te Thin Film on ITO Glass Substrate by Electrochemical Deposition.
指導教授:鄭宗杰鄭宗杰引用關係
指導教授(外文):Tsung-Chie Cheng
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:109
中文關鍵詞:熱電電化學薄膜
外文關鍵詞:ThermoelectricElectrochemical DepositionFilm
相關次數:
  • 被引用被引用:1
  • 點閱點閱:264
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
由於能源成本不斷增加與全球暖化日趨嚴重,尋找乾淨及可永續使用的能源來源成為必要之工作。其中熱電(Thermoelectric,TE)轉換技術受到相當之重視,因為此項技術能利用廢熱轉換成可使用之電力,從而提高能源使用效率。且因為電子系統微型化之發展,故微型熱電發電機、微型熱電冷卻機也隨著潮流受到人類之重視,薄膜之製備與效率改善便成為重要之課題。本研究採用電鍍方式進行薄膜之製備乃因為電鍍方式為一簡單且低成本之研究方法,不僅發展歷史悠久且具備技術成熟完備之特性。
本研究使用低電阻與低成本之ITO玻璃基板沉積熱電薄膜,以求降低成本。並以電化學沉積法將碲-鉍-銻薄膜沉積於ITO玻璃基板上,藉由改變Sb3+濃度與電流密度探討不同參數下對所沉積的薄膜之熱電特性影響。製備完成之碲-鉍-銻薄膜以SEM觀察其微結構、以XRD鑑定其晶體結構,並進行相關一連串之厚度量測與電性分析。於本研究中可發現需使用獨立法配置碲-鉍-銻溶液以避免硝酸與銻離子產生反應而大量消耗,使得所製備之碲-鉍-銻薄膜Sb含量提高。由於本研究所製備之薄膜於成長過程中應力相當大,故初期製備之薄膜特性、品質不佳,透過一系列之研究發現需於沉積時間45分鐘當中,每5分鐘添加0.1μl應力調整劑調整薄膜之應力,以維持薄膜之品質。研究結果發現本研究所製備之碲-鉍-銻薄膜經霍爾效應量測證實為P型熱電材料,且在實驗條件為Sb3+濃度15mM、38mM分別於電流密度1.1mA/cm2下沉積0.5~45分鐘,其厚度(T,μm)與沉積時間(t,min)呈線性關係。由於電流密度或電解液濃度的變化會使得碲-鉍-銻薄膜之結構型態改變,本研究歸類出三種類型分別為球狀結構、綜合結構及針狀結構;且所沉積之碲-鉍-銻薄膜中離子含量比例可藉由電解液濃度與電流密度加以控制。由於好的熱電材料需具備高Seebeck係數,本研究量測所獲得最佳之Seebeck值為在實驗條件38mM-2.1mA/cm2下所得,其值為32.89μV/K。功率因子亦為材料性質好壞判定基準之一,功率因子愈大代表此材料性質愈佳,本研究量測所獲得最佳之功率因子為實驗條件15mM-2.1 mA/cm2下所測得之49.5505α2/ρ。
Due to the cost of energy and global temperature are in severe increases, discovering clean and sustainable-developing energy source becomes a necessity. One of them with high regard is the technology of thermoelectric (TE) conversion, which turns waste heat to be usable electric power, and then raise the density of energy utilization. Additionally, because electrical system is miniaturizing, micro-generator and micro-cooler, along with the trend, are drawn more attention by people. Thus, how to improve density of energy utilization and produce thin films become hot issues. The study takes electroplating as the basis of methodology on account of its low-cost, maturity, and time-honored developing.
In this study, for lowering the total cost, we use ITO glass, owing to low electric resistance and cost, to deposit thermoelectric thin films. With electrochemical deposition, we deposit Te-Bi-Sb thin films on ITO glasses, trying to probe into different influences on thermoelectric characteristics by changing Sb3+ consistency and current density. The finished Te-Bi-Sb thin films will be observed by Scanning Electron Microscope (SEM) to realize the microstructure, also, be identified the crystal structure with XRD, and to analyze a series of related coating thickness measures and electrical analysis. Besides, we found the Te-Bi-Sb solution ought to be concocted independently to avoid large consumption from the reaction between nitric acid and Sb3+.
In the lab, the process of thin film deposition brings high stress, which makes the initial characteristic and quality inconspicuously. In the 45-minutes-process, we find we need to add 0.1μl regulator per 5 minutes to maintain the film’s coating quality. The research result finds out the thin film is a P-type thermoelectric material, by the measure of Hall Effect, and in the condition: Sb3+ concentration of 15mM and 38mM, separately precipitated under current density of 1.1mA/cm2 for 0.5-45 minutes, the film thickness (T, μm) and deposition time (t, min) are developing in linear relationship. Owing to the variation of current density or electrolyte density affects and changes the structure of Te-Bi-Sb film, the study categorizes three types of forming structures: Ball-type, Mixed-type, and Acicular-type; the ion content of the precipitated film can be controlled by alter current or electrolyte density.
Good thermoelectric material requires high Seebeck coefficient, and the best one in the study is in the condition of 38mM-2.1mA/cm2, which results in 32.89μV/K. Also, power factor is a criterion to evaluate a material, and bigger factor equals to better quality. In this study, we get the best power factor in the condition of 15mM-2.1 mA/cm2, with the result of 49.5505α2/ρ.
目錄
中文摘要 I
Abstract III
誌謝 V
目錄 VI
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1前言 1
1.2研究動機與目標 2
第二章 理論概述與文獻回顧 5
2.1熱電材料之應用 5
2.1.1熱電致冷器 5
2.1.2熱電發電機 5
2.2 熱電原理 6
2.2.1 Seebeck效應 6
2.2.2 Peltier效應 7
2.2.3 Thomson效應 7
2.3 熱電優值(Figure of Merit) 8
2.4 Bi-Te-Sb薄膜之製程 9
2.5 Bi-Te-Sb薄膜之成長機制 10
2.6 電鍍原理概述 11
2.7 電鍍添加劑概述 12
2.8 研究原由 14
第三章 實驗方法及設備 21
3.1 實驗材料 21
3.2 試片製備 21
3.3 溶液分析 21
3.4 結構分析與觀察 22
3.4.1 厚度量測 22
3.4.2 掃描式電子顯微鏡(SEM)表面分析 22
3.4.3 X射線繞射儀(XRD)晶體結構分析 22
3.5 電性分析 23
3.5.1 電阻率(Resistivity)分析 23
3.5.2 Seebeck係數量測分析 23
3.5.3 霍爾效應 24
第四章 結果與討論 35
4.1 Bi-Te-Sb溶液配置方法探討 35
4.2 Bi-Te-Sb溶液之接觸角量測 35
4.3 應力調整劑使用之探討 36
4.4 Bi-Te-Sb薄膜之成長機制 38
4.4.1 成長結構分析 38
4.4.2 成長速率分析 40
4.5 於不同條件下電化學沉積之Bi-Te-Sb薄膜 40
4.5.1 於不同電流密度下對Bi-Te-Sb薄膜結構影響之分析 40
4.5.2 不同Sb3+濃度之溶液下對Bi-Te-Sb薄膜結構影響之分析 41
4.5.3 成分分析 43
4.5.4 電性分析 44
第五章 結論 82
第六章 未來工作 83
參考文獻 84
附錄 90
作者簡介 92



























表目錄
表1.1 各種薄膜製程方法之優缺點比較[15] 3
表2.1 熱電材料於室溫下之性質 16
表3.1 實驗藥品規格 25
表3.2 ITO玻璃與白金鈦網規格 25
表3.3 溶液配置 26
表4.1 Sb3+濃度38mM,電流密度1.1mA/cm2情況下於不同溶液配製方法之成 分含量比較 46
表4.2 Sb3+濃度(15mM、20mM、24mM、28mM、38mM)之沉積碲-鉍-銻薄膜成分含量表 46


圖目錄
圖1.1 熱電材料的選擇依操作溫度對ZT值的影響[9] 4
圖2.1 利用N型或P型半導體與金屬導線如Cu連接,外加一直流電源即可作為 最基本之熱電原件[8] 17
圖2.2 (a)以N型及P型半導體互相搭配微熱電元件最佳組合;(b)典型商業化熱電結構示意圖[8] 17
圖2.3 Seebeck效應熱電偶示意圖[20] 18
圖2.4 Peliter效應熱電偶示意圖[20] 18
圖2.5 Thomson效應示意圖[20] 18
圖2.6 絕緣體、半導體和金屬之熱電特性比較[26] 19
圖2.7 於電化學沉積碲化鉍中薄膜中碲原子百分比成Bi/Te=1:1(a)電壓(b)電流密度的改變[29] 20
圖2.8 薄膜成長過程[32] 20
圖3.1 電鍍架構簡圖 27
圖3.2 Keithley2410多功能電源電錶 27
圖3.3 實驗流程圖 28
圖3.4 立式顯微鏡 29
圖3.5 表面輪廓儀 30
圖3.6 場發射電子顯微鏡 31
圖3.7 多功能X光繞射儀 32
圖3.8 四點探針量測系統 33
圖3.9 Seebeck係數量測架構圖 34
圖3.10 霍爾效應量測系統 34
圖4.1 Sb3+濃度38mM,電流密度1.1mA/cm2情況下於不同溶液配置方法之微結構比較 47
圖4.2 不同Sb3+濃度溶液之接觸角變化 48
圖4.3 Sb3+濃度24mM、38mM分別於電流密度1.1 mA/cm2、1.5mA/cm2、2.1mA/cm2在未添加應力調整劑情況下之微結構觀察 49
圖4.4 Sb3+濃度38mM於電流密度1.1mA/cm2情況下比較有、無添加應力調整劑之微結構差異 50
圖4.5 Sb3+濃度38mM於電流密度1.1mA/cm2情況下比較應力調整劑使用方法之差異 51
圖4.6 Sb3+濃度38mM於電流密度1.1mA/cm2情況下比較應力調整劑使用劑量之差異 52
圖4.7 碲-鉍-銻薄膜三種結構之SEM圖 (a)38mM-1.1mA/cm2(b)38mM-2.1mA/cm2,(c) 38mM-1.5mA/cm2 3
圖4.8 碲-鉍-銻薄膜三種結構之XRD繞射圖(a)38mM-1.1mA/cm2(b)38mM-2.1mA/cm2,(c) 38mM-1.5mA/cm2 4
圖4.9 Sb3+濃度38mM於電流密度0.7mA/cm2情況下不同時間晶粒成長之微結構圖(a) 2min,(b) 5min,(c) 15min,(d) 45min,(e) 60min,(f) 90min,(g) 120min 5
圖4.10 Sb3+濃度38mM於電流密度1.1mA/cm2情況下不同時間晶粒成長之微結構圖(a) 0.5min,(b) 1min,(c) 2min,(d) 5min,(e) 15min,(f) 30min,(g) 45min,(h) 60min,(i) 90min,(j) 120min 7
圖4.11 Sb3+濃度15mM於電流密度1.1mA/cm2情況下不同時間晶粒成長之微結構圖(a) 1min,(b) 2min,(c) 5min,(d) 15min,(e) 30min,(f) 45min 9
圖4.12 15mMSb3+,電流密度1.1mA/cm2下不同時間晶粒成長之XRD圖(a)1min,(b) 2min,(c) 5min,(d) 15min,(e ) 30min ,(f) 45min 60
圖4.13 碲-鉍-銻薄膜之晶粒成長於不同濃度下厚度與時間關係圖 61
圖4.14 不同電流密度下Sb3+濃度15mM之碲-鉍-銻薄膜微結構圖(a)1.1mA/cm2,(b)1.5mA/cm2,(c) 2.1mA/cm2 62
圖4.15 不同電流密度下15mM之碲-鉍-銻薄膜XRD繞射圖(a)1.1mA/cm2,(b)1.5mA/cm2,(c) 2.1mA/cm2 63
圖4.16 不同電流密度下Sb3+濃度24mM之碲-鉍-銻薄膜微結構圖(a)1.1mA/cm2,(b)1.5mA/cm2,(c) 2.1mA/cm2 64
圖4.17 不同電流密度下24mM之碲-鉍-銻薄膜XRD繞射圖(a)1.1mA/cm2,(b)1.5mA/cm2,(c) 2.1mA/cm2 65
圖4.18 不同電流密度下Sb3+濃度38mM之碲-鉍-銻薄膜微結構圖(a)1.1mA/cm2,(b)1.5mA/cm2,(c) 2.1mA/cm2 6
圖4.19 不同電流密度下38mM之碲-鉍-銻薄膜XRD繞射圖(a)1.1mA/cm2,(b)1.5mA/cm2,(c) 2.1mA/cm2 7
圖4.20 電流密度1.1mA/cm2添加 (a)15mM,(b)20mM,(c)24mM,(d)28mM,(e)38mM Sb3+濃度之碲-鉍-銻薄膜微結構圖 8
圖4.21 電流密度1.1mA/cm2添加 (a) 15mM,(b) 20mM,(c) 24mM,(d) 28mM, (e)38mM Sb3+之碲-鉍-銻薄膜XRD繞射圖 9
圖4.22 電流密度1.5mA/cm2添加 (a)15mM,(b)20mM,(c)24mM,(d)28mM,(e)38mM Sb3+濃度之碲-鉍-銻薄膜微結構圖 70
圖4.23 電流密度1.5mA/cm2添加 (a) 15mM,(b) 20mM,(c) 24mM,(d) 28mM, (e)38mM Sb3+之碲-鉍-銻薄膜XRD繞射圖 71
圖4.24 電流密度2.1mA/cm2添加 (a)15mM,(b)20mM,(c)24mM,(d)28mM,(e)38mM Sb3+濃度之碲-鉍-銻薄膜微結構圖 72
圖4.25 電流密度2.1mA/cm2添加 (a) 15mM,(b) 20mM,(c) 24mM,(d) 28mM, (e)38mM Sb3+之碲-鉍-銻薄膜XRD繞射圖 73
圖4.26 碲-鉍-銻薄膜Bi含量與Sb3+濃度之關係圖 4
圖4.27 碲-鉍-銻薄膜Te含量與Sb3+濃度之關係圖 5
圖4.28 碲-鉍-銻薄膜電阻率與Sb3+濃度之關係圖 6
圖4.29 碲-鉍-銻薄膜電阻率與電流密度之關係圖 7
圖4.30 碲-鉍-銻薄膜Seebeck係數與Sb3+濃度之關係圖 8
圖4.31 碲-鉍-銻薄膜Seebeck係數與電流密度之關係圖 9
圖4.32 碲-鉍-銻薄膜功率因子與Sb3+濃度之關係圖 80
圖4.33 碲-鉍-銻薄膜功率因子與電流密度之關係圖 81
參考文獻
1.G.J. Snyder, J.R. Lim, C.K. Huang, J.P. Fleurial, 2003, “Thermoelectric microdevice fabricated by a MEMS-like electrochemical process,” Nature materials 2, 258-531
2.A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. III Goddard, J. R. Heath, 2008, “Silicon nanowires as efficient thermoelectric materials,” Nature materials 451, 168-171.
3.L. D. Hicks and M. S. Dresselhaus, 1993, “Effect of quantum-well structures on the thermoelectric figure of merit,” Phys. Rev. B 47, 12727–12731.
4.Y. M. Lin, M. S. Dresselhaus, 2003, “Thermoelectric properties of superlattice nanowires.” Phys. Rev. B 68, 075304.
5.G. Chen,1998,“Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices .”Phys. Rev. B 57, 14 958.
6.M.S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S.B. Cronin, T. Koga, J.Y. Ying, G. Chen,1999,“The promise of low-dimensional thermoelectric materials.” Microscale Thermophysical Engineering 3, 89-100
7.陳洋元,溫室效應與地球暖化談到-高效率熱電材料的研發,中央研究院週報, 1169期。
8.朱旭山, 2005 ,熱電材料元件之發展與應用, 工業材料雜誌 220, 93。
9.T.M. Tritt, 1999, “Thermoelectric materials: Holey and Unholey Semiconductors.” Science 283. 804-805.
10.D.H. Kim, E. Byon, G.H. Lee, S. Cho, 2006, “Effect of deposition temperature on the structural and thermoelectric properties of bismuth telluride thin films grown by co-sputtering.” Thin Solid Films 510, 148-153.
11.A. Giani, A. Boulouz, F. Pascal-Delannoy, A. Foucaran, A. Boyer , 1998, “MOCVD growth of Bi2Te3 layers using diethyltellurium as a precursor.” Thin Solid Films 315, 99-103.
12.E. Charles, E. Groubert, and A. Boyer, J. Mater. ,1988, “Structural and electrical properties of bismuth telluride films grown by the molecular beam technique. ” Journal of Materials Science Letters 7, 575-577.
13.J. Dheepa, R. Sathyamoorthy, A. Subbarayan, 2005, “Optical properties of thermally evaporated Bi2Te3 thin films.” Journal of Crystal Growth 274, 100-105
14.K. Tittes, A. Bund, W. Plieth, A. Bentien, S. Paschen, M. Plötner, H. Gräfe, W. J. Fischer, 2003, “Electrochemical deposition of Bi2Te3 for thermoelectric microdevices.” Journal of Solid State Electrochemistry 7, 714-723.
15.莊達人, 1995 年,VLSI 製造技術. 高立出版。
16.J. Lee, S. Farhangfar, J. Lee, L. Cagnon, R. Scholz, U. Gösele, K. Nielsch, 2008, “Tuning the crystallinity of thermoelectric Bi2Te3 nanowire arrays grown by pulsed electrodeposition.” Nanotechnology 19, 365701.
17.F. Li, W. Wang, 2009, “Electrodeposition of BixSb2-xTey thermoelectric thin films from nitric acid and hydrochloric acid systems.” Applied Surface Science 255, 422-4231
18.Y. Miyazaki, T. Kajitani, 2001, “Preparation of Bi2Te3 films by electrodeposition.” Journal of Crystal Growth 229, 54-546.
19.林克衛,2006年,熱電材料在汽車廢熱回收的應用,車輛研測資訊,09月。
20.D.M. Rowe, 1995 , CRC handbook of thermoelectrics, CRC Press, Boca Raton, 221.
21.W. Wang, Q. Huang, F. Jia, J. Zhu ,2004 ,Electrochemically assembled P-type Bi2Te3 nanowire arrays, J. Appl. Phys. 96, 615-618
22.M.S. Sander, R. Gronsky, T. Sands, A. M. Stacy., 2003 , Structure of bismuth telluride nanowire arrays fabricated by electrodeposition into porous anodic alumina templates, Chem. Mazer 15, 335-339.
23.L.D. Hicks, T.C. Harman, and M.S. Dresselhaus, 1993 , Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials, Appl. Phys. Lett. 63, 3230.
24.B.C. Sales, D. Mandrus, and R.K. Williams, 1996,A filled skutterudite antimonides: a new class of thermoelectric materials, Science 272, 1325-1328.
25.Y. Miyazaki, T. Kajitani, 2001, Preparation of Bi2Te3 films by electrodeposition, J. Crystal Growth, 229, 542-546.
26.X.B. Zhao, S.H. Hu, M.J. Zhao, et al., 2002, Thermoelectric properties of Bi0.5Sb1.5Te3/polyaniline hybrids prepared by mechanical blending, Mater. Lett. 52, 147-149.
27.Plotner M, 1998 , Thermobacteria mit galvanische abgeschiedenen Schenkein. Abschlussbericht, TU Dresden
28.D.M. Rowe, 2005, Thermoelectrics handbook:macro to nano, CRC Press1-8.
29.S. Michel, S. Diliberto, C. Boulanger, N. Stein, J.M. Lecuire, 2005, “Galvanostatic and potentiostatic deposition of bismuth telluride films from nitric acid solution: effect of chemical and electrochemical parameters.” Journal of Crystal Growth 277, 274–283.
30.Feihui Li,Wei Wang,2009,Investigations on the electrodeposition behavior of Bi0.5Sb1.5Te3 thinfilm from nitric acid baths. ,Electrochimica Acta,3745-3752
31.Feihui Li,Wei Wang,2010,Electrodeposition of P-type BixSb2-xTey thermoelectric film from dimethyl sulfoxide solution. , Electrochimica Acta,5000-5005
32.柯賢文, 2005,表面與薄膜處理技術,全華出版社。
33.田民波, 2006,薄膜技術與薄膜材料,清華大學出版社。
34. Rao.R. Tumala. 2001, Fundamentals of Microsystems Packaging McGraw-Hill.
35. H Chaouni, J Bessieres, A Modaressi, J.J. Heizmann, 2000 , “Texture prediction of Bi2Te3 electroplated layers using Hartman's theory of crystal growth.” Journal of Applied Electrochemistry 30, 419-427.
36.Ik-Soo Kim,Taek-Kyung Kim,Soon-Jik Hong,Byonh-Sun Chun,2002,Thermoelectric properties of p-type 25%Bi2Te3+75%Sb2Te3 alloys manufactured by rapid solidification and hot pressing. ,Materials Science and Engineering B90,42-46.
37.B.S. Chun,J.K. Lee,H.G. Jung,2007,Thermoelectric properties of gas atomized p-type Sb2Te3-25%Bi2Te3 alloys. ,Journal of Alliys and Compounds 434-435,710-713.
38.K. Park. ,S.W. Nam,C.H. Lim,2010,Thermoelectric properties of p-type Bi0.5Sb1.5Te3 for Solid-State cooling devices. ,Intermetallics 18,1744-1749.
39.S. Michel, S. Diliberto, C. Boulanger, B. Bolle, 2006, “Effect of electrochemical deposition conditions on the crystallographic texture of bismuth telluride alloys” Journal of Crystal Growth 296, 227–233
40.王月,熊楚強, 2008年,電化學,新文京開發出版股份有限公司。
41.蘇葵陽,1994年,實用電鍍理論與實務,復文書局。
42.黃進益 D.R.Crow,1999年,電化學的原理及應用,高立圖書有限公司。
43.中國塗裝檢測儀器網, http://www.tzjc17.com/news/bencandy.php?fid=32&id=1207
44.劉仁志,2009年電鍍添加劑技術問答,化學工業出版社。
45.張景雙 石金聲 石磊 曹立新, 2003年,電鍍溶液與鍍層性能測試,化學工業出版社。
46.方景禮, 2007年,電鍍添加劑理論與應用,國防工業出版社。
47. J.L. Cui, H.F. Xue, W.J. Xiu, W. Yang, X.B. Xu, 2006, Scr. Mater. 55, 371.
48. M.S. Sander, R. Gronsky, T. Sands, A.M. Stacy, 2003, Chem. Mater. 15, 335.
49. B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D.Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, Z.F. Ren, 2008,Science 320 ,634.
50. B.C. Sales, D. Mandrus, R.K. Williams, 1996, Science 272 , 1325.
51. J. Jiang, L.D. Chen, S.Q. Bai, Q. Yao, 2005, J. Alloy. Compd. 390, 208.
52. X.A. Fan, J.Y. Yang, W. Zhu, S.Q. Bao, X.K. Duan, Q.Q. Zhang, 2008,J. Alloy. Compd. 448 ,308.
53. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P.Fleurial, P. Gogna, 2007, Adv. Mater. 19 , 1043.
54. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, 2001,Nature 413 ,597.
55. X.H. Li, B. Zhou, L. Pu, J.J. Zhu, 2008, Cryst. Growth Des. 8 , 771.
56. F.H. Li, Q.H. Huang, W. Wang, 2009, Electrochim. Acta 54, 3745.
57. F.H. Li, W. Wang, 2009,Appl. Surf. Sci. 255 , 4225.
58. E.J. Menke, M.A. Brown, Q. Li, J.C. Hemminger, R.M. Penner, 2006 ,Langmuir 22 ,10564.
59. S. Li, M.S. Toprak, H.M.A. Soliman, J. Zhou, M. Muhammed, D. Platzek, E. Müller, 2006 ,Chem. Mater. 18 ,3627.
60. L.X. Bu, W. Wang, H. Wang, 2007,Appl. Surf. Sci. 253 ,3360.
61. F. Xiao, C. Hangarter, B. Yoo, Y. Rheem, K.-H. Lee, N.V. Myung, 2008,Electrochim. Acta53 , 8103.
62. M.S. Sander, R. Gronsky, T. Sands, A.M. Stacy, 2003,Chem. Mater. 15 ,335.
63. B.Y. Yoo, F. Xiao, K.N. Bozhilov, J. Herman, M.A. Ryan, N.V. Myung, 2007, Adv. Mater.19 ,296
64. R. Venkatasubramanian, T. Colpitts, E. Watko, M. Lamvik, N. El-Masry, 1997 , J. Cryst.Growth 170 , 817.
65. B. Aboulfarah, A. Mzerd, A. Giani, A. Boulouz, F. Pascal-Delannoy, A. Foucaran,A. Boyer, 1999,J. Mater. Sci. Lett. 18 ,1095.
66. Y. Miyazaki, T. Kajitani, 2001,J. Cryst. Growth 229 ,542.
67. M. Martı′n-Gonza′ lez, A.L. Priet, R. Gronsky, T. Sands, A.M. Stacy, 2002,J. Electrochem.Soc. 149 ,C546.
68. D.D. Frari, S. Diliberto, N. Stein, C. Boulanger, J.M. Lecuire, 2005 ,Thin. Solid. Films 483 ,44.
69. B.Y. Yoo, C.-K. Huang, J.R. Limb, J. Herman, M.A. Ryanb, J.-P. Fleurial, N.V. Myung, 2005 ,Electrochim. Acta 50 ,4371.
70. E.J. Menke, M.A. Brown, Q. Li, J.C. Hemminger, R.M. Penner, 2006,Langmuir 22,10564.
71. S.H. Li, M.S. Toprak, H.M.A. Soliman, J. Zhou, M. Muhammed, D. Platzek, E. Mu¨ ller, 2006 , Chem. Mater. 18 , 3627.
72. L.X. Bu, W. Wang, H. Wang, 2007,Appl. Surf. Sci. 253 ,3360.
73. M. Takahashi, M. Kojima, S. Sato, N. Ohnisi, A. Nishiwaki, K. Wakita, T. Miyuki, S.Ikeda, Y. Muramatsu, 2004 ,J. Appl. Phys. 96,5582.
74. F. Xiao, C. Hangarter, B. Yoo, Y. Rheem, K.-H. Lee, N.V. Myung, 2008,Electrochim. Acta 53 , 8103.
75. D.D. Frari, S. Diliberto, N. Stein, C. Boulanger, J.M. Lecuire,2006,J. Appl. Electrochem. 36 ,449.
76. B.Y. Yoo, F. Xiao, K.N. Bozhilov, J. Herman, M.A. Ryan, N.V. Myung, 2007, Adv. Mater. 19, 296.
77. Q. Yao, C.F. Wang, S.G. Liufu, L.D. Chen, 2007, Rare. Metal. Mater. Eng. 36 , 419.
78. H. Ebe, M. Ueda, T. Ohtsuka, 2007 , Electrochim. Acta 53, 100.
79. M. Martín-González, A.L. Prieto, M.S. Knox, R. Gronsky, T. Sands, A.M. Stacy, 2003 , Chem. Mater. 15 , 1676.
80. A.L. Prieto, M. Martin-Gonzalez, J. Keyani, R. Gronsky, T. Sands, A.M. Stacy, 2003 , J.Am. Chem. Soc. 125, 2388.
81. J. Keyani, A.M. Stacy, J. Sharp,2006, Appl. Phys. Lett. 89 , 233106/1–233106/3.
82. D.D. Frari, S. Diliberto, N. Stein, C. Boulanger, J.M. Lecuire, 2006, J. Appl. Electrochem. 36, 449.
83. B.Y. Yoo, F. Xiao, K.N. Bozhilov, J. Herman, M.A. Ryan, N.V. Myung, 2007, Adv. Mater. 19 , 296.
84.Wan-Cian Jhong , 2010 , Fabrication and Thermoelectric Properties of Bi2Te3 Thin Film on ITO Glass Substrate by Electrochemical Deposition.
85. R. Yamada, H. Wano, K. Uosaki, 2000, “Effect of Temperature on Structure of the self-Assembled Monolayer of Decanethiol on Au(111) Surface”, Langmuir 16, 5523-5525.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔