(3.238.130.97) 您好!臺灣時間:2021/05/18 08:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:賴祉妤
研究生(外文):Jhih-Yu Lai
論文名稱:不同尺寸之方形微結構對池沸騰熱傳影響之研究
論文名稱(外文):The Study of Pool Boiling Heat Transfer with Different Square Sized Microstructures
指導教授:鄭宗杰鄭宗杰引用關係
指導教授(外文):Tsung-Chie Cheng
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:130
中文關鍵詞:不同圖形之孔穴表面濕濡性池沸騰熱傳活躍成核孔穴
外文關鍵詞:pool boilingmicro-structureactive artificial cavities radiushydrophilic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:607
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用非等向性之蝕刻方式,蝕刻(100)矽晶圓之表面,以探討在矽晶圓表面上蝕刻出具有相同之陣列,而改變方形微結構之孔穴口徑的大小,對表面過熱度之溫度、臨界熱通量(CHF)的影響。
實驗將方形微結構之孔穴口徑的大小分為兩個部分。一為小尺寸之孔穴,當方形微結構之孔穴的口徑邊長為2、8和15μm且蝕刻深度固定為40μm時,理論活躍成核孔穴之口徑半徑值,並將理論預測值與實際實驗結果相互比較,結果顯示實驗值與預測值之表面過熱度的溫度誤差為4.55%。依照理論結果顯示表面過熱度之溫度越大,所對應之活躍成核孔穴之口徑半徑越小,與實驗結果相符。實驗結果顯示孔穴的口徑邊長為15μm時,所需的表面過熱度之溫度最低且臨界熱通量值最高,其導致熱傳係數與光滑表面相比增加一倍以上。而熱傳係數越高的話表示熱傳能力越強,所以依實驗結果顯示孔穴的口徑邊長為15μm時之熱傳能力最好。另一為大尺寸之孔穴,當方形微結構之孔穴的口徑邊長為100、200和300μm且蝕刻深度固定為40μm時,接觸角會隨著孔穴的口徑邊長的增加而減少。則起始於沸騰點的表面過熱度之溫度會隨著接觸角越小,表面濕濡性越好而增加。然而臨界通量會因為孔穴口徑變大,導致孔穴間隙變小的關係,在高熱通量時,氣泡與氣泡很容產生合併,造成主液體無法再補充於孔穴中,因此,降低臨界熱通量。然而假設氣核之前動態前進接觸角大於方形孔穴之底部夾角的話,會使氣核容易殘存在孔穴中,導致不需要太高的表面過熱度之溫度就可以產生沸騰。經由本實驗結果發現起始於較低的表面過熱度之溫度,會影響在高熱通量之臨界熱通量值。由實驗結果得知方形微結構之孔穴的口徑邊長為100μm時,所需的表面過熱度之溫度比邊長為200和300μm時都還低,而造成熱傳係數的變高,表示熱傳能力越強。然而孔穴的口徑邊長為100μm之臨界熱通量與光滑表面相比較可以提高34%。
本實驗所採用的工作液體為FC-72,其特性為具有極高的濕濡性質、不容易與其他化學物質產生反應、具有不導電性質且具有較低的飽和溫度為56.6o,因以上之特性,所以很適合當池沸騰過程中的工作液體。
Anisotropic etching on (100) silicon chip surface. An experimental is etched on the silicon chip surface with the same array, and change the size of the artificial cavities diameter of square micro-structure, and discuss the size of the square micro-structure of artificial cavities diameter on silicon chip surfacec to chage superheat temperature and critical heat flux (CHF). An experimental study was performed to investigate the nucleate boiling and critical heat flux (CHF) of FC-72 dielectric liquid on hydrophilic square micro-structure silicon chip surface by the cost-effective and simple micro-structure silicon chip technique. The utility of boiling heat transfer is characterized by two parameters: (i) heat transfer coefficient (HTC) or the material thermal conductance; (ii) the CHF limit that demarcates the transition from high HTC to very low HTC. While increasing the CHF and the HTC has significant influence on system-level energy efficiency, safety, and cost, their values for dielectric fluids FC-72 have essentially remained unchanged for many decades.
The 4cm2 hydrophilic square micro-structure silicon chip surfaces with different active artificial cavities radius and large size artificial cavities was utilized in saturated pool boiling tests with wetting dielectric fluid FC-72, and its performance was compared to that of a silicon chip surface. The results showed the artificial cavities diameter size of 15μm and 100μm increased CHF by 17.4% and 34% for FC-72, respectively, and boiling performance enhancement are dependent on the level of wettability improvement. In addition, the nucleate boiling heat transfer coefficient (HTC) of artificial cavities diameter size on silicon chip surface appeared higher than that of silicon chip surface. Because a high surface tension force offered by liquids in silicon chip surface provides an additional mechanism for boiling enhancement.
目 錄
ABSTRACT iii
1、 緒論 - 1 -
1.1 研究動機與背景 - 1 -
1.2 池沸騰之熱傳機制與熱傳曲線圖 - 3 -
1.3 成核理論 - 4 -
1.3.1均質成核 - 5 -
1.3.2非均質成核 - 7 -
1.4 成核址孔穴的尺寸範圍 - 8 -
1.5 加熱表面氣泡的脫離 - 11 -
1.6 文獻參考 - 12 -
1.6.1池沸騰與增強池沸騰 - 13 -
1.6.2表面粗糙度對池沸騰之影響 - 14 -
1.6.3不同圖形結構對池沸騰之影響 - 15 -
1.6.4圖形尺寸對池沸騰之影響 - 18 -
1.6.5圖形間隙對池沸騰之影響 - 18 -
1.6.6活躍成核孔穴對池沸騰熱傳之影響 - 20 -
1.6.7接觸角對池沸騰熱傳之影響 - 21 -
1.7 研究目的 - 22 -
2、 實驗設備與步驟 - 40 -
2.1 實驗設備 - 40 -
2.1.1腔體結構 - 40 -
2.1.2加熱模組-測試片之製作 - 41 -
2.1.3數據之擷取系統 - 50 -
2.1.4除氣系統搭配冷卻系統 - 50 -
2.1.5 環境控制系統 - 51 -
2.1.6工作流體 - 51 -
2.2 實驗步驟 - 53 -
2.3 不確定性分析 - 54 -
2.4 沸騰熱傳分析式 - 56 -
3、 實驗結果與討論 - 74 -
3.1小尺寸之孔穴對池沸騰的影響 - 74 -
3.1.1接觸角與小尺寸之孔穴的關係 - 74 -
3.1.2活躍成核孔穴與表面過熱度溫度之關係 - 76 -
3.1.3小尺寸孔穴對池沸騰之影響 - 77 -
3.2大尺寸之孔穴對池沸騰的影響 - 80 -
3.2.1接觸角與大尺寸之孔穴的關係 - 80 -
3.2.2大尺寸孔穴對池沸騰之影響 - 81 -
4、 結論 - 109 -
5、 未來工作 - 111 -
6、 參考文獻 - 112 -


表 目 錄
表 2 1小尺寸的方形微結構結構參數表 - 49 -
表 2 2大尺寸的方形微結構結構參數表 - 49 -
表 2 3 FC-72之性質與參數表 - 52 -
表 2 4具有方形微結構之表面的不確定性分析 - 55 -
表 3 1小尺寸的方形微結構結構參數表 - 85 -
表 3 2大尺寸的方形微結構結構參數表 - 86 -
表 3 3圖形邊長尺寸分別為100、200、300μm、深度固定為40μm之深寬比 - 87 -
表 3 4小尺寸孔穴之接觸角 - 88 -
表 3 5大尺寸孔穴之接觸角 - 99 -

圖 目 錄
圖 1 1 各種不同的強化沸騰熱表面(Pate et al.,1990)[2] - 23 -
圖 1 2表面粗糙度對池沸騰的影響(Berenson,1960)[2] - 24 -
圖 1 3 沸騰曲線圖[3] - 25 -
圖 1 4過熱度液體裡的平衡氣核[2, 4] - 26 -
圖 1 5氣核成長的四個階段 - 27 -
圖 1 6成核孔穴口氣泡與邊界層 - 28 -
圖 1 7活躍成核孔穴之口徑的半徑範圍 - 29 -
圖 1 8各池沸騰區域加熱表面附近的蒸氣結構(Gaertner,1965)[12] - 30 -
圖 1 9微型孔穴之SEM圖[32] - 31 -
圖 1 10奈米碳管陣列之圖形[35] - 32 -
圖 1 11單向與雙向之孔穴結構圖[36] - 33 -
圖 1 12直徑尺寸10μm深度40μm圓柱形之SEM圖[37] - 34 -
圖 1 13在垂直狹窄空間中的沸騰現象示意圖 - 35 -
圖 1 14氣泡離開時之頻率、氣泡間間隙與直徑(S/D)之關係圖[44] - 36 -
圖 1 15活躍成核孔穴之尺寸與表面過熱度之關係圖[7] - 37 -
圖 1 16分別為水與FC-72之活躍成核孔穴與表面過熱度[7] - 38 -
圖 1 17接觸角與液體濡濕能力 - 39 -
圖 2 1池沸騰實驗設備之示意圖 - 59 -
圖 2 2模擬實際池沸騰過程之示意圖 - 60 -
圖 2 3整個製作測試片之流程示意圖 - 61 -
圖 2 4模擬池沸騰過程的加熱模式 - 62 -
圖 2 5電漿輔助式化學氣相沈積&感應耦合式電漿蝕刻系統(PECVD & ICP) - 63 -
圖 2 6光阻旋轉塗佈機(Spin Coater) - 64 -
圖 2 7加熱平板[50] - 65 -
圖 2 8曝光機,台國家奈米元件實驗室台南廠所提供[51] - 66 -
圖 2 9感應耦合式電漿蝕刻之系統(ICP) - 67 -
圖 2 10感應耦合原理示意圖 - 68 -
圖 2 11感應耦合式電漿(ICP)反應腔體示意圖 - 69 -
圖 2 12反應式離子蝕刻系統(STS) - 70 -
圖 2 13訊號擷取器(MX100 YOKOGAWA) - 71 -
圖 2 14恆溫箱 - 72 -
圖 2 15方形孔穴之SEM圖 - 73 -
圖 3 1接觸角與臨界熱通量(CHF)和接觸角與熱傳係數(ht)之關係 - 89 -
圖 3 2活躍成核孔穴口徑半徑與起始沸騰表面之過熱度溫度關係圖 - 90 -
圖 3 3方形微結構之邊長尺寸與表面過熱度之溫度關係 - 91 -
圖 3 4以水和FC-72分別探討與表面過熱度之溫度的關係 - 92 -
圖 3 5方形孔穴之尺寸對池沸騰之影響 - 93 -
圖 3 6在起始沸騰時,表面過熱度溫度與熱通量之關係圖 - 94 -
圖 3 7熱傳係數(ht)與熱通量之關係圖 - 95 -
圖 3 8方形孔穴之邊長尺寸2μm;孔穴密度12╳12之陣列圖形 - 96 -
圖 3 9方形孔穴之邊長尺寸8μm;孔穴密度12╳12之陣列圖形 - 97 -
圖 3 10方形孔穴之邊長尺寸15μm;孔穴密度12╳12之陣列圖形 - 98 -
圖 3 11方形孔穴之尺寸對池沸騰之影響 - 100 -
圖 3 12臨界熱通量(CHF)、熱傳係數(ht)與深寬比之關係圖 - 101 -
圖 3 13起始沸騰時,熱通量與表面過熱度之溫度關係圖 - 102 -
圖 3 14臨界熱通量(CHF)與熱傳係數(ht)之關係 - 103 -
圖 3 15方形孔穴之口徑邊長、接觸角與臨界熱通量(CHF)之關係 - 104 -
圖 3 16方形之孔穴中液體和固體之間的動態接觸角之關係圖 - 105 -
圖 3 17方形孔穴之邊長尺寸100μm;孔穴密度12╳12之陣列圖形 - 106 -
圖 3 18方形孔穴之邊長尺寸200μm;孔穴密度12╳12之陣列圖形 - 107 -
圖 3 19方形孔穴之邊長尺寸300μm;孔穴密度12╳12之陣列圖形 - 108 -
[1]N. Shiro, "The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure," 1993.
[2]潘欽, "沸騰熱傳與雙相流," 國立編譯館, 2001.
[3]V. P. Carey, "Liquid-Vapor Phase-Change Phenomena," Hemisphere Washington, DC, 1992.
[4]J. G. a. T. Collier, J. R. , "Convective Boiling and Condensation, 3 rd Ed., ch.4, Clarendon Press," Oxford, UK.1994.
[5]W. Tong, Bar-Cohen, A., Simon, T. W. and You, S. M. and "Contact Angle Effects on Boiling Incipience of Highly-Wetting Liquids," International Journal of Heat Mass Transfer, vol. 33, pp. 91-103. 1990
[6]Y. Y. Hsu, "On the Size Range of Active Nucleation Cavities on a Heating Surface," J.0f Heat Transfer,vol.84,pp.207-216.
[7]V. P. Carey, "Liquid–Vapor Phase-Change Phenomena," Taylor & Francis, 1992.pp. 190.
[8]E. G. a. S. Keshock, R., "Acting on Bubbles in Nucleate Boiling under Normal and Reduced Gravity Conditions," NASA Technical Note ,NASA TN D-2299, 1964.
[9]W. Fritz, "Berechnung des Maximal volume von Dampfblasen," Phys. Z., vol. 36, p. 379, 1935.
[10]R. R. Cole, W.M., "Correlation of Bubble Diameters for Boiling of Saturated Liquids," Chemical Engineering Progress Symposium Series, vol. 65,no.92, pp. 211-213, 1968.
[11]J. H. Lienhard, "A Heat Transfer Textbook," ch. Prentice-Hall, Englewood Cliffs, New Jersey,USA., 1981.
[12]R. F. Gaertner, "Photographic study of nucleate pool boiling on a horizontal surface," Journal of Heat Transfer (U.S.), vol. 87, 1965 Feb 01.
[13]A. Luke, "Thermo and fluid dynamic in boiling, Connection between surface roughness: bubble formation and heat transfer," Proceedings of the Second European Thermal Science and Fourteenth United Nation National Heat Transfer Conference, Rome,May 29–31,1996.
[14]V. K. D. C.H. Wang, "Effects of surface wettability on active site density during pool boiling of water on a vertical surface," J. Heat Transfer 115, pp. 659–669., (1993).
[15]H. I. K.T. Hong, R.L. Webb, , "Effect of oxidation and surface roughness on contact angle," Exp. Therm.Fluid Sci. 8, pp. 279–285., 1994.
[16]R. Hino, Ueda T., "Studies on heat transfer and flow characteristics in subcooled flow boiling—Part 1 Boiling characteristics," Int. J. Multiphase Flow ( U.S.A.), vol. Vol. I 1, No. 3, pp. 269-281, 1985
[17]K. Nishikawa, Fujita, Y., Uchida, S., Ohta, H., "Effect of Surface Configuration on Nucleate Boiling Heat Transfer," Int. J. Heat Mass Transfer vol. 27, pp. 1559-1571, 1994.
[18]W. M. Rohsenow, "A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids," Trans.ASME, vol. 74, pp. 969-975, 1952.
[19]J. P. M. B. J. Jones, S. V. Garimella "The Influence of Surface Roughness on Nucleate Pool Boiling Heat Transfer," Journal of Heat Transfer (U.S.), vol. 131, 2009.
[20]M. G. Kang, "Effect of surface roughness on pool boiling heat transfer," International Journal of Heat and Mass Transfer, vol. 43, 2000.
[21]T. H. Honda H., Wei J. J. , "Enhanced Boiling of FC-72 on Silicon Chips With Micro-Pin-Fins and Submicron-Scale Roughness," in Journal of Heat Transfer (U.S.) vol. 124, ed, 2002.
[22]S. H. B. N.K. Phadke, A. Goyal, R.C. Jaeger, J.S. Goodling, " Re-entrant cavity surface enhancement for immersion cooling of silicon multi-chip packages," Proceeding of International Society Conference on Thermal Phenomena, pp. 59–65., 1992.
[23]C. A. C. W.M. Sluyter, P.C.Slooten, A.K. Chesters, "The departure size of pool-boiling bubbles from artificial cavities at moderate and high pressures," Int. J. Multiphase Flow 17, pp. 153–158., (1991).
[24]R. W. R. Ramming, " Growth of vapor bubbles from artificial nucleation sites," Cryogenics 31 (8) pp. 64–70., (1991)
[25]W. D. B. B.K. Mori, "Bubble departure from cavities," Int. J. Heat Mass Transfer 44, pp. 771–783., (2001).
[26]e. a. Qui D., "Single bubble dynamics during nucleate boiling under low gravity conditions," in: Proceedings of the Engineering Foundation Conference on Micro-gravity Fluid Physics and Heat Transfer, Honolulu Hawaii,, pp. 62–71., 1999.
[27]T. H. Kubo H. , Honda H., "Effects of size and number density of micro-reentrant cavities on boiling heat transfer from a silicon chip immersed in degassed and gas-dissolved FC-72," Enhanced Heat Transfer 6, pp. 151–160, 1999.
[28]S. H. B. Chris S. Baldwin, and Richard C. Jaeger, "Toward Optimizing Enhanced Surfaces For Passive Immersion Cooled Heat Sinks," IEEE Transactions on Components and Packaging Technologies, vol. 23, pp. 70–79., (2000).
[29]C. P. T. S.H. Bhavnani, R.C. Jaeger "Pool boiling characteristics of enhanced hybrid silicon surfaces," Trans.ASME: Heat Transfer Electron. Equip. 171 (1991)19–27.
[30]G. F. S.H. Bhavnani, R.C. Jaeger, "Immersion-Cooled Heat Sinks for Electronics: Insight from High-Speed Photography," IEEE Trans. Comput. Packag. Technol. 23(2001) 166–176.
[31]R. C. J. S.H. Bhavnani, D.L. Eison, "An integral heat sink for cooling microelectronic components," J. Electron.Packag. 115 (1993) 284–291.
[32]D. C. L. a. T. C. C. Chih Kuang Yu, "Pool boiling heat transfer on artificial micro-cavity surfaces in dielectric fluid FC-72," J. Micromech. Microeng. 16 (2006) 2092–2099.
[33]R. L. Chen, Ming-Chang Srinivasan, Vinod Wang, Zhijie Cho, Hyung Hee Majumdar, Arun, "Nanowires for Enhanced Boiling Heat Transfer," Nano Letters, vol. 9, pp. 548-553, 2009.
[34]C. Li, et al., "Nanostructured Copper Interfaces for Enhanced Boiling," Small, vol. 4, pp. 1084-1088, 2008.
[35]S. Ujereh, et al., "Effects of carbon nanotube arrays on nucleate pool boiling," International Journal of Heat and Mass Transfer, vol. 50, pp. 4023-4038, 2007.
[36]P. K. D. A.K. Das, P. Saha, "Performance of different structured surfaces in nucleate pool boiling," Applied Thermal Engineering, vol. 29, pp. 3643-3653, 2009.
[37]D. B. R. K. C. Hutter, K. Sefiane, T.G. Karayiannis, H. Lin, G. Cummins, A.J. Walton, "Experimental pool boiling investigations of FC-72 on silicon with artificial cavities and integrated temperature microsensors," Experimental Thermal and Fluid Science, vol. 34, pp. 422-433, 2010.
[38]M. S. K. Yasui, "Bubbling behavior from a single cavity," in: Proceedings of the Thirty-ninth Japan National Heat Transfer Symposium, Sapporo, June 2002 (in Japanese).
[39]M. I. E.Isaacson, "Dimensional Methods in Engineering and Physics," Edward Arnold, London., 1975.
[40]Y. Katto, "Generalized Correlations for Critical Heat Flux of Naturnal Convection Boiling in Confined," Trans. JSME, vol. 44, pp. 3908-3911, 1978.
[41]Y. S.C. , Youg Chang, "Pool boiling heat transfer in a confined space," International Journal Heat Mass Transfer 26, 841-848. , 1983.
[42]W. H. Chunlin Xia, Zengyuan Guo "Natural Convective Boiling in Vertical Rectangular Narrow Channels," Experimental Thermal and Fluid Science 12, pp. 313-324, 1996.
[43]J. C. Passos, Hirata, F. R., Possamai, L. F. B., Balsamo, M., Misale, M., , "Confined Boiling of FC-72 and FC-87 on a Downward Facing Heating Copper Disk," International Journal of Heat and Fluid Flow 25, pp. 313-319. , 2004.
[44]M. S. L. Zhang, "Nucleation site interaction in pool boiling on the artificial surface," Int. J. Heat Mass Transfer46 (2003) 513–522.
[45]M. S. L. Zhang, "Nucleation site interaction in pool boiling -Experimental study by employing artificial boiling surface, ," in: Proceedings of the Fifth ASME-JSME Thermal Engineering Joint Conference, Hawaii, March 16–20, 2003.
[46]W. Wu, Bostanci, H.Chow, L. C. Hong, Y.Su, M.Kizito, J. P., "Nucleate boiling heat transfer enhancement for water and FC-72 on titanium oxide and silicon oxide surfaces," International Journal of Heat and Mass Transfer, vol. 53, pp. 1773-1777, 2010.
[47]H. Xiao, "Introduction to Semiconductor Manufacturing Technology," Prentice Hall, 2001.
[48]國家奈米元件實驗室奈米元件台南廠所, "電漿輔助式化學氣相沈積&感應耦合式電漿蝕刻系統(PECVD & ICP) " http://www.ndl.org.tw, 2009.
[49]國家奈米元件實驗室奈米元件台南廠所, "破片光阻旋轉塗佈機," http://www.ndl.org.tw, 2009.
[50]國家奈米元件實驗室奈米元件台南廠所, "加熱平板," http://www.ndl.org.tw.
[51]國家奈米元件實驗室奈米元件台南廠所, "曝光機," http://www.ndl.org.tw.
[52]L. W. Rui, "Development of a Force Sensing Array System and Its Applications in Cell-Mechanics " National Cheng Kung University Tainan Taiwan ,R.O.C ,June,2004.
[53]J. P. Holman, "Experimental Methods for Engineers," McGraw Hill, 2001.
[54]F. A. M. S. J. Kline, "Describing Uncertainties in Single- Sample Experiment," Mech. Eng p.3, January, 1953.
[55]H. Jo, et al., "A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces," International Journal of Heat and Mass Transfer, vol. 54, pp. 5643-5652, 2011.
[56]U. G. E.Hahne, "Heat Transfer in Boiling " Hemisphere Publishing Co.,Washington., pp. 120-125, 1977.
[57]R. B. Moissis, P.J., "On the Hydrodynamic Transitions in Nucleate Boiling," J. of Heat Transfer, pp. 221-229, 1963.
[58]M. S. a. Y. Takagi, "Bubbling Features from a Single Artificial Cavity," International Journal of Heat and Mass Transfer 44 (2001) 2763-2776. .
[59]S. G. Bankoff, "Ebullition from Solid Surface in the Absence of a Pre-existing Gaseous Phase " Trans. of ASME, vol. 79, p. 735, 1957.
[60]S. M. Y. K.N.Rain, "Effect of heater size and orientation on pool boiling heat transfer from microporous coated surfaces," Int. J. Heat Mass Transfer 44, pp. 2589-2599, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top