(3.236.122.9) 您好!臺灣時間:2021/05/12 19:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:周鉅強
研究生(外文):Chu Chiang Chou
論文名稱:硬質陽極氧化鋁合金6061T6的選擇性吸收特性之研究
論文名稱(外文):The Study on Selective Absorbing performance of Hard Anodic Oxide Aluminum Alloy 6061T6
指導教授:鄭宗杰鄭宗杰引用關係
指導教授(外文):Tsung Chieh Cheng
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:197
中文關鍵詞:硬質陽極氧化陽極氧化硫酸選擇性吸收梯度折射率
外文關鍵詞:hard anodic oxideanodic aluminum oxideSulfuric acidSolar Selective absorbersGraded index
相關次數:
  • 被引用被引用:1
  • 點閱點閱:531
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
由於早期的一般陽極處理之製程所備製出的多孔性陽極氧化鋁為無色或稱之為本色之多孔陽極氧化鋁,故於光熱之應用上需再施以電解著色之製程,使其行成具有色彩的選擇性吸收結構,而且使用之材料大多集中在純鋁板以及鋁箔上
,而於鋁合金之研究仍屬少數。而鋁合金本身具有優於純鋁之機械特性,於日常生活中也已經廣泛被使用,且透過改變其製程參數而獲得的高深寬比之多孔性結構於抗反射之應用上已獲得相當的肯定與矚目。
在本篇論文中,主要是以研究製程參數對鋁合金6061-T6於硫酸(Sulfuric acid)中施以單一硬質陽極處理以備製高深寬比之選擇性吸收結構之研究,並於前處理之製程中,藉由探討電解拋光對其粗糙度對於表面形貌以及光學特性之影響以獲的基材之特性,並於後續之硬質陽極處理中,探討其製程參數溫度以及施加之電壓對於硬質陽極氧化膜的膜層厚度、表面形貌、組成成分以及光學特性之影響,而於實驗結果中發現其基材本身之粗糙度變化、接觸角、氧元素變化與粗糙度成正比關係,而於於製程溫度之探討中發現較低之額定電壓可使其表面結構較為完整,且其孔洞大小、膜厚與隨著製程溫度成正比關係,而較高之處理電壓則會造成於0℃以上時,表面結構被破壞並形成不規則之形狀,而於0℃之低溫進行額定電壓之探討發現其孔洞大小、膜厚與電壓成正比增加。於基材之光譜量測中發現其於850nm之波段具有一個吸收峰,而其反射率受菲涅爾反射之影響促使反射隨角度增加而增加,而製程溫度之探討發現於結構完整之狀況下,孔洞大小、膜厚與平均反射率呈現反比之關係,而不完整之結構則造成表面產生散色現象而使反射率呈現不規則變化。而於低溫進行額定電壓之探討發現一般硬質陽極處理之孔洞大小、膜厚與平均反射率呈現正比。而於光熱效率之探討中則發現於固定之額定電壓並改變製程溫度下,光熱效率與平均反射率呈現反比之現象,而於固定溫度並改變額定電壓下,光熱效率與平均反射率並無呈現線性之變化關係,最後得到於0℃之低溫下施與50V之額定電壓所獲得之高深寬比之多孔陽極氧化膜擁有較低之平均反射率,並同時擁有較高之光熱效率。
Because of the pure anodic oxide alumin produced by anodic oxide is colorless or nature color.Therefore, the application of light and heat on the need to impose the electrolytic coloring process.To let it become the selective absorption structure of color.And the materials almost get together on the Pure aluminum substrate and aluminum foil substrate,and there is still a minority analysis in Aluminum alloy.The Aluminum alloy has a better mechanical properties than Pure aluminum.so it also been widely used in daily life.It take much attention because of the High aspect ratio porous structure in the application of anti-reflective by changing the Process parameters.

In this paper, we based on the study of process parameters on the alloy 6061-T6 single hard anodized to prepare with high aspect ratio selective absorption structure subjected to sulfuric acid.We get the Surface properties and Optical properties of substrate by study on Roughness of electrolytic polishing in the pre process. And analysis the film thickness of the hard anodic oxide film,Surface morphology, Composition and optical properties effect by the Process parameters temperature and the applied voltage.In the experimental results, we find the roughness changing, contact angle and oxygen element changing proportional to the roughness.We find the surface structure is more complete by use the low voltage in the process of temperature analysis.And the pore size, thickness is proportional to the process temperature.The high voltage will reduce the damaged surface structure and formed the irregular shape when the temperature above 0 ℃.It was found pore size, thickness is proportional to voltage at the low temperatures of 0 ℃.It was found the absorption peak in the 850nm wave by measure the Spectrum of the substrate.And the reflectivity is increased with the reflective angle increased due to the snell’s law.We found the Pore size, thickness is inversely proportional relationship to the average reflectance when the structure is complete in the process of temperature.And the uncompleted structure will reduced the surface produceing the phenomenon of casual color and make irregular changes in the reflectivity.It was found the pore size and thickness is proportional to the average reflectivity when the voltage is in the low temperature.The efficiency of solar thermal is inversely proportional to the average reflectivity by changing the process temperature in the regular voltage.But when the temperature is fixed and change the voltage, it was not showing a linear relationship between the efficiency of solar thermal and The average reflectivity.Finally, we get the much low average reflectivity and more high efficiency of solar thermal of the high aspect ratio porous anodic oxide film when the temperature is 0℃and the voltage is 50V.
中文摘要 I
ABSTRACT III
誌謝 V
目錄 VI
表目錄 IX
圖目錄 X
1. 緒論 1
1.1 前言 1
1.2 太陽能市場介紹 2
1.3 研究動機 10
1.4 論文概要 10
2. 太陽輻射能吸收原理 11
2.1 太陽能吸收與輻射原理 11
2.2 物體的吸收與輻射原理 11
2.3 能帶理論 12
2.4 非選擇與選擇性光吸收 13
2.5 既有之選擇性光吸收分類 13
2.5.2 半導體/金屬雙層結構 14
2.5.3 多層薄膜 14
2.5.4 光學捕獲 15
2.5.5 顆粒塗層 15
2.5.6 量子尺寸效應 15
2.6 單層與多層薄膜結構 16
2.7 非均質結構 20
2.7.1 顆粒結構 20
2.7.2 孔洞結構 20
2.7.3 蛾眼結構 21
2.8 複合結構 21
3. 光學原理 30
3.1 折射定律 30
3.2 反射定律 30
3.3 臨界角與全反射定律 30
3.4 光的偏振 31
3.5 菲涅爾折射公式 33
3.6 布魯斯特角 34
3.7 等效介質與非均質層理論 34
4. 材料特性與製程原理 42
4.1鋁及其合金介紹及比較 42
4.2 陽極氧化鋁及硬極陽極氧化鋁之簡介 43
4.3 陽極氧化鋁及合金成長機制 44
5. 文獻回顧 50
5.1 文獻回顧前言 50
5.2 陽極處理文獻回顧 50
5.3 彩色氧化鋁之文獻回顧 56
5.4 次波長結構之文獻回顧 61
5.4.1 梯度折射率 61
5.4.2 結構深寬比與孔洞尺寸 62
6. 實驗與分析儀器原理 100
6.1 實驗材料 100
6.2 實驗流程 100
6.3分析儀器 105
6.3.2 接觸角量測 106
6.3.3 電子掃描式顯微鏡 107
6.3.4 能量散射光譜儀 107
6.3.5 紫外光/可見光/近紅外光光譜儀 108
6.3.6 絕對反射量測系統 108
6.3.7 影像分析處理軟體 109
7. 結果與討論 119
7.1 電化學拋光對基材之表面特性的影響 119
7.2 陽極處理製程溫度對於處理過程與結構的影響 121
7.3 電壓對於陽極處理過程與結構的影響 125
7.4 電化學拋光對基材之光學特性的影響 127
7.5 陽極處理溫度對光學的影響 129
7.6 額定電壓對光學的影響 132
7.7 反射率對升溫效率的影響 134
7.7.1額定電壓 134
7.7.2製程溫度 134
8. 結論 168
9.未來工作 169
參考文獻 170
[1]Co2 New, http://co2now.org/.
[2]Mapawatt, http://mapawatt.com/tag/fukushima-nuclear-earthquake/.
[3]Solar energy trends, http://solarenergytrends.blogspot.com/2010/10/ solar-market -keeps -shining-in2011- says.html
[4]IT產業趨勢研究中心, http://mag.nownews.com/article.php?mag=11-60-4170
[5]華強電子網, http://www.hqew.com/info-166820.html.
[6]Cosscience1, http://cosscience1.pbworks.com/w/page/8286081/ Lesson%207-02
%20Heating%20The%20Atmosphere.
[7]J.S. Hseh, 1986,Solar Energy Engineering,Prentice Hall.
[8]J. Welty,2002,Fundamentals of Momentum,Heat and Mass Transfer(5/e), Wiley.
[9]C. M. Lampert,1987,“Advanced Optical Materials For Energy Efficiency and Solar Conversion ”,Solar Energy Materials,Vol .4,pp. 347-379.
[10]W.E.J. Neal, A.H. Musa,1981,“Observation on black Nickel Foil Selective Surfaces ”,Surface Technology, Vol. 4,pp .345-352.
[11]A. Kita, 2011,“Principles of Solar Cells,LEDs and Diodes”,Wiley
[12]林華偉,2010,微生物燃料電池之複合陽極板的研究,國立宜蘭大學機械與機電工程學研究所。
[13]W.F. Bogaerts,1983,“Review Materials for photothermal solar energy conversion”,Journal of Materials Science,Vol. 18,pp. 2847-2875.
[14]C. M. Lampert, 1978,“ A Solar Test Collector For Evaluation Of Both Selective and Nonselective absorbers”,Submitted to the International Journal of Solar Energy, LBNL Paper LBL-6974.
[15]C.M.Lampert, 1979,“CoatingsFor enhanced PhotothermaL Energy Collection”,SolarEnergy Materials,Vol. 1,pp .319-341.

[16]C. E. Kennedy, 2002, “Review of Mid- to High-Temperature Solar Selective Absorber Materials”,NREL/TP-520-31267 ,Golden, CO: National Renewable Laboratory .
[17]陳枝政,2009,電漿氧化製備銅氧化物及銅-二氧化矽複合材料之太陽能選擇性吸收膜之性質研究,國立台灣科技大學材料科技研究所。
[18]R.E.I. Schropp,2004, “ Present status of micro- and polycrystalline silicon solar cells made by hot-wire chemical vapor deposition”,Thin Solid Film,Vol. 451-452,pp. 455-465.
[19]B. O. Seraphin,1976, “Chemical vapor deposition of thin semiconductor films for solar energy conversion”,Thin Solid Film, Vol. 39,pp .87-94.
[20]M. J. Brett, R. R. Parsons,H. P. Baltes,1986, “Zinc oxide multilayers for solar collector coatings”,Applied Optics,Vol. 25,pp. 2712-2714.
[21]J. J. Cuomo, J. F. Ziefler,J. M. Woodale,1975, “A new concept for solar energy thermal conversion”, Appl. Phys. Lett, Vol .26,pp. 557-559.
[22]C.Choudhury, H. K. Sehgal,1982, “Black Cobalt Selective Coatings by Spray Pyrolysis for Photothermal Conversion of Solar Energy”,Solar Energy,Vol.28,pp. 25-31.
[23]Z. Hu, X. Liao, H. Diao, Y. Cai, S. Zhang, E. Fortunato, R. Martins , 2006,“Hydrogenated p-type nanocrystalline silicon in amorphous silicon solar cells”, Journal of Non-Crystalline Solids, Vol. 352,pp .1900-1903.
[24]盧俊廷,2008,次波長奈米結構之 LIGA 製程技術研究,國立雲林科技大學機械工程研究所。
[25]S. Chattopadhyay, Y.F. Huang, Y.J. Jen, A. Ganguly, K.H. Chen, L.C. Chen ,2010, “Anti-reflecting and photonic nanostructures”,Materials Science and Engineering R,Vol. 69, pp.1–35.
[26]鄭竣謙,2006 ,雙層抗反射膜覆蓋三接面三-五族太陽電池之研究,中原大學應用物理研究所。
[27]丁效強,2005,光子晶體抗反射膜研究,國立中央大學光電研究所。
[28]A. Gombert, W. Gombert, K. Rose, J. Dreibholz, B. Blasi, A. Heunzel,D. Spom, W. Doll, V. Wittwer,1999 “Subwavelength-structured antireflective surfaces on glass”,Thin Solid Films,Vol. 351, pp.73–78.
[29]Q. Zhang, C.S. Dandeneau, K. Rark, D. Liu, X. Zhou, Y.H. Jeong,G. Cao , 2010 “Light scattering with oxide nanocrystallite aggregates for dyesensitized solar cell application”, Journal of Nanophotonics,vol .4, pp.1–23.
[30]M. J. Minot,1976, “Single-layer, gradient refractive index antireflection films effective from 0.35 to 2.5 u”,Journal the Optical Society of America, Vol.66,pp .515-519
[31]Y. Kanamori, K. Kobayashi, H. Yugami, K. Hane, Jpn, “Subwavelength,2003, “ Antireflection Gratings for GaSb in Visible and Near-Infrared Wavelengths”,Journal of Physics A,Vol .42, pp.4020–4023.
[32]M. L. Kuo, D.J. Poxson, Y. S. Kim, F. W. Mont,J. K. Kim, E. F. Schubert, S.Y. Lin,2008, “Realization of a near-perfect antireflection coating for silicon solar energy utilization”, Optics Letters, Vol. 33,pp .2527–2529.
[33]M. Suzuki, A. Takada, T. Yamada,T. Hayasaka, K. Sasaki, E. Takahashi, S, Kumagai, 2010, “Low-reflective wire-grid polarizers with absorptive interference overlayers”, Nanotechnology,Vol .21,pp. 175604 -175610.
[34]康為紘,2006,新型直下式背光模組設計,國立中央大學光電研究所。
[35]宋昱廷,2007,超薄型導光板光學設計與模內成形分析,國立高雄應用科技大學模具工程研究所。
[36]詹景翔,2009,多孔質陽極氧化鋁模板製作似蟬翼抗反射結構,國立台灣科 技大學機械工程系。
[37]許民宗,2003,高精密液晶顯示元件間隙量測與光學特性之研 究,國立中央物理研究所。
[38]楊振昌,2010,以陽極處理製備6061-T6氧化膜及特性研究,國立高雄應用科技大學機械與精密工程研究所。

[39]W. Lee, R. JI, U. G ¨osele, K. Nielsch,2006,“Fast fabrication of long-range ordered porous alumina membranes by hard anodization”,Nature Materials, Vol.5, pp.741-747.
[40]F. Li, L. Zhang, R.M. Metzger,1998, “On the growth of highly ordered pores in anodized aluminum oxide”, Chem. Mater, Vol. 10, pp. 2470-2480
[41]何光朗,2008,次微米陽極氧化鋁孔洞製作光學元件之研究,國立台灣科技大學機械工程系。
[42]V. P. Parkhutik , V. I. Shershulsky ,1992, “Theoretical modelling of porous oxide growth on aluminium”,Nanotechnology, Vol .25,pp .1250–1263.
[43]O. Jessensky, F. Mu¨ller, and U. Go¨sele,1998, “Self-organized formation of hexagonal pore arrays in anodic alumina” Applied Physics Letters,Vol.72, pp.1173-1175.
[44]A. M Georgiev, 1945, The electrolytic capacitor, Murray Hill Books.
[45]J.D. Edwards, F. Keller, 1940, “Formation of anodic coatings on aluminum”, Iop Publishing,Vol. 79,pp .135-144.
[46]F. Keller, M. S. Hunter, D. L. Robinson,1953, “Structural features of oxide coating on aluminium”, Journal of The Electrochemical Society, Vol.100, pp. 411-419.
[47]J.P.O'Sullivant, G.C. wood, 1970, “The morphology and mechanism of formation of porous anodic films on aluminium”,Proceedings of the Royal Society of London , vol.100, pp. 511-543.
[48]H. Masuda, H. Tanaka, N baba, 1981, “Porous anodic film formation on aluminium”,Nature,Vol 290,pp. 230-232.


[49]H. Masuda, H. Tanaka, N baba,1990, “Preparation of porous material by replacing microstructure of anodic alumina film with metal”,Chemistry letters,Vol 19,pp .621-622.
[50]H. Masuda, M. Satoh,1993, “Fabrication of a onedimensional microhole array by anodic oxidation of aluminum”,Japanese Journal of Applied Physics”,Vol. 35,pp .L126 – L129.
[51]H. Masuda, K. Fukuda,1995, “Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina”, Science,Vol .268,pp. 1466 - 1468.
[52]H. Masuda, M. Satoh,1996, “Fabrication of one-dimensional microhole array by Anodic oxidation of aluminum”, Applied physics Lettrts,Vol .63,pp .3155 – 3157.
[53]H. Masuda,H. Yamada, M. Satoh,H. Asoh,1997, “ Highly ordered nanochannel-array architecture in anodic alumina”,Applied physics Lettrts,Vol .71,pp .2770-2772.
[54]A. P. Li, F. Müller, A. Birner, K. Nielsch,U. Gösele, 1998, “ Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina”,Journal of Applied Physics,Vol .84,pp .6023-6027.
[55]D. R. Gabe, 2002, “Hard Anodizing-what Do We Mean by Hard? ”,Metal Finishing,Vol .100 , pp .52-58.
[56]吳道明,2005,陽極氧化之奈米多孔氧化鋁的研究,國立成功大學材料科學及工程學系。


[57]T. Yanagishita,K. Yasui,T. Kondo,Y. Kawamoto,K. Nishio,H. Masuda , 2007,“Antireflection Polymer Surface Using Anodic Porous Alumina Molds with Tapered Holes”,Chemistry Letters,Vol.36, pp.530-53.1
[58]K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, U.Gösele , 2008 ,“Self-Ordered Anodic Aluminum Oxide Formed by H 2 SO 4 Hard Anodization”, ACS Nano, Vol.2, pp. 302–310.
[59]S. Y. Chen,H. H. Chang, M. Y. Lai,C. Y. Liu,Y. L. Wang , 2011,“Morphological evolution of porous nanostructures grown from a single isolated anodic alumina nanochannel”, Nanotechnology, Vol.22,pp.365303-365309.
[60]K. Noh , K. S. Brammer ,T. Y. Seong, S. Jin ,2011,“Guided Nanostructures using anodized aluminum oxide templates” ,World Scientific, Vol.6, pp. 541-555.
[61]K. Nielsch, F. Müller, A.P.Li,U. Gösele,2000, “Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition” , Appl. Phys. Lett,Vol.12 , pp.582-586.
[62]David G. W. Goad, 1978, “Colloidal metal in aluminum-oxide” , Journal of applied physics, Vol .49, pp.2929-2935.
[63]Å. Andersson, O. Hunderi, C. G. Granqvist,1979,“Spectrally selective surfaces of Ni pigmented anodic Al2O3”, Appl. Phys. Lett,Vol. 35 , pp.268-270.
[64]Å. Andersson, O. Hunderi, C. G. Granqvist,1980,“Nickel pigmented anodic aluminum oxide for selective absorption of solar energy”, Appl. Phys. Lett,Vol. 51 , pp.754-764.
[65]C. G. Granqvist,1981, “Optical Properties of Cermet Materials” ,Journal de Physique Colloques, Vol. 42, pp.247-284.
[66]C. G. Granqvist,1985, “Spectrally Selective Coatings for Energy Efficiency and Solar Applications” ,Physica Scripta, Vol. 32, pp.401-407.
[67]A.K. Sharma, H. Bhojraj, V.K.Kaila, H.Narayanamurthy,1997, “Anodized and Inoganic Black Coloring of Aluminium Alloy for Space Application” ,Metal Finishing, Vol. 95, pp.14-20.

[68]J. Salmi, J.P. Bonino and R. S. Bes, 2000, “Nickel pigmented anodized aluminium as solar selective absorber” , Journal of Materials Science, Vol. 35, pp.401-407.
[69]A. Wazwaz, J. Salmi, H. Hallak, R. Bes, 2002, “Solar thermal performance of a nickelpigmented aluminium oxide selective absorber”, Renewable Energy,Vol .27,pp277–292.
[70]A. Wazwaz, R. Bes, A. Abed-rabbo, Y. Mastal,2003, “Characterization and Degradation Testing of Nickel Pigmented Anodic Alumina Solar Selective Absorber Films Produced by Alternate and Reverse Periodic Plating Technique”,International Joumal of Sustainable Energy ,Vol. 23, pp. 121–128.
[71]陳重禎,2005,晶粒及陽極處理對AA6061 鋁合金黑色電解著色膜性質之影響,大同大學材料工程研究所。
[72]T.Kaplanoglou, S. Theohari, T. Dimogerontakis, N.K. Kontos,Y. M. Wang, H.H. S. Kia,2006, “Effect of alloy types on the electrolytic coloring process of aluminum”,Surface and Coatings Technology,Vol. 200 , pp.3969 –3979.
[73]Hsing-Hsiang Shih , Yu-Chieh Huang,2008, “Study on the black electrolytic coloring of anoized aluminum in cupric sulfate”,Journal of materials processing technology, Vol. 207,pp.24–28.
[74]A. Wazwaz, J. Salmi, R. Bes,2009,Solar Net Collective Flux and Conversion Efficiency of the Nickel-Pigmented Aluminium Oxide Selective Absorber Prepared by Alternate and Reverse Periodic Technique in Different Prototype Volumes, ICEGES,Vol .4, pp.177–192.
[75]A. Wazwaz, J. Salmi, R. Bes, 2010, “The effects of nickel-pigmented aluminium oxide selective coating over aluminium alloy on the optical properties and thermal efficiency of the selective absorber prepared by alternate and reverse periodic plating technique”,Energy Conversion and Management,Vol .51,pp.1679–1683.
[76]F.L. Jones, H.J. Homer, 1941, “Chemical Methods for Increasing the Transparency of Glass Surface”,Journal of the Optical Society of America,Vol .31,pp.34–38.

[77]A. Uhir ,1956, “Electrolytic Shaping of Germanium and Silicon”,Bell System Technical Journal,Vol.35, pp.333-347.
[78]M. Okano, T. Taniguchi, M. Saito, M. Miyagi, 1990, “Residual aluminum and its dichroism in anodized alumina thin films ” ,Optics Letters, Vol. 15, pp.253-254.
[79]S. Nakamura, M. Saito, L.F. Huang, M. Miyagi , K. Wada, 1992, “Infrared optical constants of anodic alumina films with micropore arrays”,Japanese Journal of Applied Physics, Vol. 31, pp.3589-3593.
[80]L. F. Huang, M. Saito, Mitsunobu Miyagi, and Kenji Wada, 1993, “Graded index profile of anodic alumina films that is induced by conical pores”,Applied Optics, Vol.32, pp.2039-2044.
[81]L. F. Huang, M. Saito, Mitsunobu Miyagi, and Kenji Wada, 1993, “Polarization
Characteristics of Alumina Films Anodized at low Temperature”,Japanese Journal of Applied Physics, Vol .32, pp.3169-3174.
[82]P. Menna, G.D. Francia, V.L. Ferrara, 1995, “Porus silicon in solar cell: A review and a description of its application as an AR coating” , Solar Energy Materials and Solar Cells,Vol. 37, pp.13-24.
[83]V. Parkhutik, 1999, “Porous silicon mechanisms of growth and applications”, Solid state electronics, Vol .43, pp.1121-1141.
[84]D. Crouse, Y.Hwa Lo, A. E. Miller, M. Crouse, 2000, “Self-ordered pore structure of anodized aluminum on silicon and pattern transfer”,Applied physics Letters, Vol.76, pp.47-50.
[85]Y. Kanamori, K. Hane, H. Sai,H. Yugami, 2001, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask”,Applied physics Letters, Vol. 78, pp.78-80.
[86]T. Yanagishita, 2008, “Optimization of antireflection structure of polymer based on Nanoimprinting using anodic porous alumina”,Progress in Phtoviltaics:Research and Application, Vol. 19, pp.130-140.
[87]張躍馨,2008,陽極氧化鋁奈米結構之抗反射特性於太陽能電池之應用,崑山科技大學電機工程系。
[88]B.K. Chio,S.H. Park, Y.M. Song, Y.T. Lee, C.K. Hangbo, H. Yang, H.S. Lee,2010, “Nano-tailoring the Surface for the Monolithic High-Performance Antireflection Polymer Film”, Advanced Materials, vol 22, pp.3713-3718.
[89]K. Huang, Y. Li, Z. Wu, C. Li, H. Lai, J. Kang,2010, “Asymmertric light reflectance effect in AAO on glass”,Optics Express , Vol 19, pp.1301-1309.
[90]H. Jin, G. Logan, Liu, 2012, “Fabrication and optical characterization of light trapping silion nanopore and nanoscrew devices”,Nanotechnology,Vol 23,pp.125202-125206.
[91]S. F. Monaco, 1961, “Reflectance of an Inhomogeous Thin Film”, Journal of the Optical Society of America,Vol 51, pp.280-282.
[92]杜昆澤,2011,噴印製程參數對微液滴成形之研究”,國立高雄應用科技大學機械與精密工程研究所。
[93]劉思呈,2004,一維氧化鋅奈米結構之成長與特性分析,國立成功大學化學工程系。
[94]吳怡德,2007,以連續式離子層吸附與反應法製備CuInS 2於超薄吸收層太陽能電池之應用,國立成功大學化學工程系。
[95]尤聰展,2007,電漿改質技術應用於聚丙烯薄膜表面超疏水化之研究,中原大學化學工程系。
[96]G. Hass, Liu, 1949, “Fabrication and optical characterization of light On the Preparation of Hard Oxide Films with Precisely Controlled Thickness on Evaporated Aluminum Mirrors”, Journal of the Optical Society of America, Vol 39, pp.532-540.
[97]R.Liu, 2009, “An Overview of Aluminum Protective Coating Properties and Treatments”, OPTI 521 , pp.1-8.
[98]許國峰,2002,利用金屬反射基板與透明電極結構進行AlGaInP 發光二極體外部量子效率改善之研究,國立成功大學微電子工程系。
[99]M.Saito, M. Miyagi, 1989, “Anisotropic optical loss and birefringence of anodized alumina film”, Vol .6, pp.1895-1900.
[100]林維屏,2006,LED光源新式應用,國立中央光電科學研究所。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔