(44.192.66.171) 您好!臺灣時間:2021/05/18 23:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:廖紫妤
研究生(外文):Tzu-Yu Liao
論文名稱:以不同退火溫度及沉積製程對Ti:GZO透明導電膜的光電特性之影響
論文名稱(外文):The Effect of Different Annealing Temperature and Deposited Process on The Opt-Electric Properties of Ti:GZO TCO Thin Film
指導教授:張國明陳道星
指導教授(外文):Kuo-Ming ChangTao-Hsing Chen
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:110
中文關鍵詞:TCOTi:GZODC濺鍍法退火處理
外文關鍵詞:TCO filmsTi:GZODC sputteringannealingRTA
相關次數:
  • 被引用被引用:4
  • 點閱點閱:636
  • 評分評分:
  • 下載下載:81
  • 收藏至我的研究室書目清單書目收藏:0
本文採用DC濺鍍法分別沉積不同濺鍍功率之Ti薄膜與GZO薄膜於Corning玻璃基板上,並在薄膜濺鍍後利用快速退火爐進行不同溫度的退火處理,使得Ti元素能均勻的擴散摻雜入GZO薄膜內,最後探討Ti:GZO薄膜在不同退火溫度下之特性。此外,本文還改變薄膜沉積結構與製程方式,觀察比較薄膜之電性、光學和表面性質,以找出最佳的Ti:GZO透明導電膜。
結果顯示,Ti:GZO透明導電膜在Ti濺鍍功率60W、退火溫度550°C時,可得最低電阻率4.32×10-4Ω-cm,而平均透光率有80%以上;而在不同沉積結構與使用不同製程方式之薄膜,由於無法改善製程上的缺陷,導致此兩組薄膜電性與光學性質不佳。然後在表面形貌方面,經過不同退火溫度之薄膜,表面有了明顯的改變,這表示退火溫度不僅會影響Ti:GZO薄膜的電性與光學性質,也會影響其表面形貌。最後在機械性質方面,實驗結果發現濺鍍功率與濺鍍時間並不會直接影響薄膜的機械性質,主要影響為壓痕深度,隨著壓痕深度上升,硬度值下降,楊氏系數增加。
This study utilizes DC magnetron sputtering to deposit GZO transparent conductive film and Ti thin film on the same corning glass substrate, then treats GZO/Ti thin film with rapid thermal annealing. The annealing temperature is 300℃, 500℃ and 550℃, respectively. Moreover, the effects of process parameters on resistivity and optical properties are investigated. The optimum sputtering parameters include power, DC bias and working gas can be found. The deposited rate, microstructure, thickness and optical transmission of Ti:GZO thin film are performed. For example, the thicknesses of films were determined by -step profilometer. The surface morphology and the crystalline characteristics of thin films were investigated by scanning electron microscopy (SEM), Raman spectrometer and X-ray diffraction (XRD), respectively. Ga and Ti concentration in ZnO film were determined by energy dispersive X-ray spectroscopy (EDS). The electrical properties of the Ti:GZO thin films were measured by Hall method. The optical properties of Ti:GZO thin films were examined using UV–vis spectrophotometer. The nano-mechanical properties of thin film will be tested by using the nanoindentation technique. Finally, this study also use DC magnetron co-sputtering system to deposit Ti:GZO at the same time. The comparison of the resitivity, optical properties and mechanical properties are investigated.
The results show that the Ti:GZO film on sputtering power 60W and annealing temperature at 550°C has lowest electrical resistivity (about 4.32×10-4Ω-cm) and has transmittance up to 80% between 400 and 700 nm. However, the nano-mechanic properties of the annealing Ti:GZO thin film also maintains the same strength with the unannealing TiGZO thin film.
目錄
摘 要................................................................................................... i
Abstract .............................................................................................. ii
誌謝 .................................................................................................. iv
目錄 ................................................................................................... v
表目錄 ............................................................................................. viii
圖目錄 ............................................................................................... ix
第一章 緒論 ...................................................................................... 1
第二章 實驗原理與文獻回顧 ............................................................ 3
2.1 透明導電膜 .......................................................................... 3
2.1.1 氧化銦薄膜特性 .......................................................... 6
2.1.2 氧化錫薄膜特性 .......................................................... 6
2.1.3 氧化鋅薄膜特性 .......................................................... 7
2.1.4 GZO薄膜性質 ............................................................... 8
2.1.5 Ti薄膜性質 ................................................................ 10
2.2 薄膜成形技術 .................................................................... 11
2.2.1 濺鍍原理(Theory of sputter) ...................................... 12
2.2.2 直流濺鍍 ................................................................... 13
2.2.3 射頻濺鍍法 ................................................................ 14
2.3 薄膜沉積原理 .................................................................... 15
2.4 薄膜成長之樣式 ................................................................. 15
2.5 退火處理(Annealing process) .............................................. 16
2.6 霍爾效應量測原理(Hall effect measurement) ..................... 16
2.7 X-ray繞射原理 .................................................................... 18
2.8 奈米壓痕原理(Nanoindenter measurement) ....................... 20
第三章 實驗方法與步驟 .................................................................. 24
3.1 實驗流程 ............................................................................ 24
3.2 實驗規劃 ............................................................................ 25
3.3 實驗材料 ............................................................................ 25
vi
3.3.1 靶材規格 ................................................................... 25
3.3.2 基材規格 ................................................................... 25
3.3.3 工作氣體 ................................................................... 25
3.4 實驗設備 ............................................................................ 26
3.4.1 濺鍍系統 ................................................................... 26
3.4.2 退火系統 ................................................................... 27
3.5 實驗步驟 ............................................................................ 27
3.5.1 基板清洗 ................................................................... 28
3.5.2 濺鍍製程 ................................................................... 28
3.5.3 退火製程 ................................................................... 29
3.6 分析量測 ............................................................................ 30
3.6.1 膜厚分析 ................................................................... 30
3.6.2 結構分析 ................................................................... 30
3.6.3 電性分析 ................................................................... 30
3.6.4 光學性質分析 ............................................................ 32
3.6.5 表面形貌分析 ............................................................ 32
3.6.6 機械性質分析 ............................................................ 32
第四章 結果與討論 ......................................................................... 33
4.1 Ti:GZO透明導電薄膜膜厚分析 ........................................ 33
4.1.1 GZO薄膜膜厚分析 ..................................................... 33
4.1.2 Ti薄膜膜厚分析 ......................................................... 34
4.1.3 GZO/Ti薄膜膜厚分析 ................................................. 35
4.1.4 GZO/Ti/GZO薄膜膜厚分析 ......................................... 35
4.1.5 GZOTi使用共濺鍍法之薄膜膜厚分析 ........................ 36
4.2 Ti:GZO透明導電薄膜結構分析 ........................................ 37
4.2.1 GZO/Ti40透明導電膜結構分析 .................................. 37
4.2.2 GZO/Ti60透明導電膜結構分析 .................................. 38
4.2.3 GZO/Ti/GZO透明導電膜結構分析 .............................. 39
4.3 Ti:GZO透明導電薄膜電性分析 ........................................ 40
vii
4.3.1 GZO/Ti40透明導電薄膜電性分析 .............................. 40
4.3.2 GZO/Ti60透明導電薄膜電性分析 .............................. 41
4.3.3 GZO/Ti/GZO透明導電薄膜電性分析 .......................... 42
4.3.4 GZOTi使用共濺鍍法之透明導電薄膜電性分析 ......... 43
4.4 Ti:GZO透明導電薄膜霍爾量測分析 ................................. 44
4.4.1 GZO/Ti40透明導電薄膜霍爾量測分析 ....................... 44
4.4.2 GZO/Ti60透明導電薄膜霍爾量測分析 ....................... 45
4.4.3 GZO/Ti/GZO透明導電薄膜霍爾量測分析 ................... 46
4.4.4 GZOTi採用共濺鍍法之透明導電薄膜霍爾量測分析 .. 47
4.5 Ti:GZO透明導電薄膜光學性質分析 ................................. 48
4.5.1 GZO/Ti40透明導電薄膜光學性質分析 ....................... 48
4.5.2 GZO/Ti60透明導電薄膜光學性質分析 ....................... 49
4.5.3 GZO/Ti/GZO透明導電薄膜光學性質分析 ................... 50
4.5.4 GZOTi採用共濺鍍法之透明導電薄膜光學性質分析 .. 51
4.6 Ti:GZO透明導電薄膜表面形貌分析 ................................. 52
4.6.1 GZO/Ti40透明導電薄膜表面形貌分析 ....................... 52
4.6.2 GZO/Ti60透明導電薄膜表面形貌分析 ....................... 58
4.6.3 GZO/Ti/GZO透明導電薄膜表面形貌分析 ................... 64
4.6.4 GZOTi使用共濺鍍法之透明導電薄膜表面形貌分析 .. 67
4.7 Ti:GZO透明導電薄膜機械性質分析 ................................. 70
4.7.1 GZO/Ti40薄膜之機械性質分析 .................................. 70
4.7.2 GZO/Ti60薄膜之機械性質分析 .................................. 75
4.7.3 GZO/Ti/GZO薄膜之機械性質分析 .............................. 80
4.7.4 GZO/Ti60薄膜在使用共濺法下之機械性質分析 ........ 83
第五章 結論與未來展望 .................................................................. 86
5.1 結論 ................................................................................... 86
5.2 未來展望 ............................................................................ 91
參考文獻 .......................................................................................... 92
參考文獻
[1]白木靖寬、吉田貞史,2008,薄膜工程學,王建義譯,第三版,全華圖書股份有限公司,台北。
[2]王信翔,2009,射頻磁控濺鍍沉積GZO薄膜之研究,龍華科技大學工程技術研究所,碩士學位論文。
[3]楊明輝,2006,透明導電膜,第一版,藝軒圖書出版社,台北。
[4]李威憲,2010,射頻磁控濺鍍沉積氧化鋅鎵透明導電膜於可撓性塑膠基板之研究,國立台灣師範大學工業教育學系,碩士學位論文。
[5]B. Y. Oh, M. C. Jeong, D. S. Kim, W. Lee, J. M. Myoung, 2005, “Post-annealing of Al-doped ZnO films in hydrogen atmosphere”, Journal of Crystal Growth , Vol. 281, Issues 2–4, PP. 475-480.
[6]張容瑋,2010,摻雜及熱處理對氧化鋅氧化錫系非晶透明導電薄膜之影響,國立清華大學材料科學與工程學系,碩士學位論文。
[7]徐國偉,2006,氧化鋅鎵透明導電膜之光電特性與其在氮化鎵上歐姆接觸特性之研究,國立成功大學光電科學與工程研究所,碩士學位論文。
[8]S. Song, T. Yang, Y. Xin, L. Jiang, Y. Li, Z. Pang, M. Lv, S. Han, 2010, “Effect of GZO thickness and annealing temperature on the structural, electricaland optical properties of GZO/Ag/GZO sandwich films”, Current Applied Physics, Vol. 10, Issues 2, PP. 452-456.
[9]C. H. Cheng, J. M. Ting, 2007, “Transparent conducting GZO, Pt/GZO, and GZO/Pt/GZO thin films”, Thin Solid Films, Vol. 516, Issues 2-4, PP. 203-207.
[10]H. M. Lee, Y. J. Lee, I. S. Kim, M. S. Kang, S. B. Heo, Y. S. Kim, D. Kim, 2012, “Annealing effect of ZnO/Au/ZnO transparent conductive films”, Vacuum, Vol. 86, Issues 10, PP. 1494-1498.
[11]張坤榮,1994,滲雜鋁於氧化鋅透明導電膜之光特性與電特性研究,國立中央大學光電科學研究所,碩士論文學位。
[12]廖同堅,2009,製備GZO透明導電膜之研究,龍華科技大學工程技術研究所,碩士學位論文。
[13]游家豪,2006,射頻濺鍍氧化鋅薄膜於鍺基板之研究,國立交通大學材料科學與工程學系,碩士論文學位。
[14]P. Nunesa, E. Fortunatoa, P. Tonelloa, F. B. Fernandesa, P. Vilarinhob, R. Martins,2002, “Effect of different dopant elements on the properties of ZnO thin films”, Vacuum, Vol. 64, Issues 3-4, PP. 281-285.
[15]C. F. Yu, S. H. Chen, S. J. Sun, H. Chou, 2011, “Influence of the grain boundary barrier height on the electrical properties of Gallium doped ZnO thin films”, Applied Surface Science, Vol. 257, Issues 15, PP. 6498-6502.
[16]X. Yu, J. Ma, F. Ji, Y. Wang, C. Cheng, H. Ma, 2005, “Thickness dependence of properties of ZnO:Ga films deposited by rf magnetron sputtering”, Applied Surface Science, Vol. 245, Issues 1-4, PP. 310-315.
[17]X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, C. Cheng, H. Ma, 2005, “Preparation and properties of ZnO:Ga films prepared by r.f. magnetron sputtering at low temperature”, Applied Surface Science, Vol. 239, Issues 2, PP. 222-226.
[18]S. Kim, J. Jeon, H. W. Kim, J. G. Lee, C. Lee, 2006, “Influence of substrate temperature and oxygen/argon flow ratio on the electrical and optical properties of Ga-doped ZnO thin films prepared by rf magnetron sputtering”, Crystal Reseaech and Technology, Vol. 41, Issues 12, PP.1194-1197.
[19]J. H. Kim, B. D. Ahn, C. H. Kim, K. A. Jeon, H. S. Kang, S. Y. Lee, 2008, “Heat generation properties of Ga doped ZnO thin films prepared by rf-magnetron sputtering for transparent heaters”, Thin Solid Films, Vol. 516, Issues 7, PP.1330-1333.
[20]B. K. Shin, T. I. Lee, J. H. Park, K. I. Park, K. J. Ahn, S. K. Park, W. Lee, J. M. Myoung, 2011, “Preparation of Ga-doped ZnO films by pulsed dc gnetron sputtering with cylindrical rotating target for thin film solar cell applications”, Applied Surface Science, Vol. 258, Issues 2, PP.834-838.
[21]H. K. Kim, K. J. Ahn, H. Jang, H. Lee, 2012, “Dependence of Electrical, Optical, and Structural Properties on the Thickness of GZO Films Prepared by CRMS”, Journal of The Electrochemical Society, Vol. 159, Issues 1, PP.38-43.
[22]B. G. Kim, J. Y. Kim, S. J. Lee, J. H. Park, D. G. Lim, M. G. Park, 2010, “Structural, electrical and optical properties of Ga-doped ZnO films on PET substrate”, Applied Surface Science, Vol. 257, Issues 3, PP.1063-1067.
[23]J. K. Kim, J. M. Lee, J. W. Lim, J. H. Kim, S. J. Yun, 2010, “High-Performance Transparent Conducting Ga-Doped ZnO Films Deposited by RF Magnetron Sputter Deposition”, Japanese Journal of Applied Physics, Vol. 49, Issues 4, PP. 04DP09-04DP09-4.
[24]J. Y. Tseng, Y. T. Chen, M. Y. Yang, C. Y. Wang, P. C. Li, W. C. Yu, Y. F. Hsu, S. F. Wang, 2009, “Deposition of low-resistivity gallium-doped zinc oxide films by low-temperature radio-frequency magnetron sputtering”, Thin Solid Films, Vol. 517, Issues 23, PP. 6310-6314.
[25]Y. J. Park, H. N. Kim, H. H. Shin, 2009, “Effects of deposition temperature on the crystallinity of Ga-doped ZnO thin films on glass substrates prepared by sputtering method”, Applied Surface Science, Vol. 255, Issues 17, PP. 7532-7536.
[26]E. Nam, Y. H. Kang, D. Jung, Y. S. Kim, 2010, “Anode material properties of Ga-doped ZnO thin films by pulsed DC magnetron sputtering method for organic light emitting diodes ”, Thin Solid Films, Vol. 518, Issues 22, PP. 6245-6248.
[27]D. H. Kim, S. H. Lee, G. H. Lee, H. B. Kim, K. H. Kim, Y. G. Lee, T. H. Yu, 2010, “Effects of deposition temperature on the effectiveness of hydrogen doping in Ga-doped ZnO thin films”, Journal of Applied Physics, Vol. 108, Issues 2, PP. 023520-023520-5.
[28]X. Bie, J. Lu, Y. Wang, L. Gong, Q. Ma, Z. Ye, 2011, “Optimization of parameters for deposition of Ga-doped ZnO films by DC reactive magnetron sputtering using Taguchi method”, Applied Surface Science, Vol. 257, Issues 14, PP. 6125-6128.
[29]董雅清,2008,濺鍍Ti與Ni / Ti薄膜之殘留應力分析,聖約翰科技大學,自動化及機電整合研究所,碩士學位論文。
[30]維基百科,http://zh.wikipedia.org/wiki/%E9%92%9B。
[31]M. Jiang, X. Liu, G. Chen, J. Cheng, X. Zhou, 2009, “Preparation and photoelectric properties of Ti doped ZnO thin films annealed in vacuum”, Journal of Materials Science, Vol. 20, PP. 1225-1228.
[32]C. S. Wu, B. T. Lin, R. Y. Yang, 2011, “Structural and optical properties of Ti-doped ZnO thin films prepared by the cathodic vacuum arc technique with different annealing processes”, Thin Solid Films, Vol. 519, Issues 15, PP. 5106-5109.
[33]H. F. Liua, C. K. Yuan, 2011, “Influence of the sputtering pressure on the properties of TAZO films prepared by DC magnetron sputtering”, Materials Science Forum, Vol. 663-665, PP. 1045-1048.
[34]H. F. Liua, H. F. Zhang, 2011, “Transparent conducting TGZO thin films deposited by DC magnetron sputtering at room temperature”, Materials Science Forum, Vol. 663-665, PP. 1041-1044.
[35]趙乙璇,2007,以直流磁控濺鍍法沉積氧化鋅-鋁透明導電膜於可撓式塑膠基板之性質研究,國立高雄應用科技大學模具系研究所碩士班,碩士學位論文。
[36]謝振剛,2005,氧化鋅鋁透明導電膜光、電特性之研究,國立中央大學光電科學研究所,碩士學位論文。
[37]霍爾效應,http://zh.wikipedia.org/wiki/%E9%9C%8D%E7%88%BE%E6%95%88%E6%87%89。
[38]張國華,2006,透明導電氧化鋅材料特性分析及其應用在氮化鎵蕭特基二極體之研究,國立成功大學光電科學與工程研究所,碩士學位論文。
[39]吳旻原,1998,以射頻磁控濺鍍沉積氧化新透明導電膜之研究,建國科技大學電機工程研究所,碩士學位論文。
[40]蔡發達,2008,氧化銦錫薄膜之機械性質與磨耗特色研究,聖約翰科技大學機械與電腦輔助工程系,碩士學位論文。
[41]C.M. Lepienski, G.M. Pharr, Y.J. Park, T.R. Watkins, A. Misra, X. Zhang, 2004, “Factors limiting the measurement of residual stresses in thin films by nanoindentation”, Thin Solid Films, Vol. 447-448, PP. 251–257.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊