跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/26 21:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐志宗
研究生(外文):Jhih-Zong Syu
論文名稱:壓電風扇對於散熱鰭片的熱傳量測及探討
論文名稱(外文):Effect of Piezofan on the Enhancement of Heat Transfer of Heat SinksWith Experimental Approach
指導教授:徐金城徐金城引用關係
指導教授(外文):Jin-Cherng Shyu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:86
中文關鍵詞:壓電風扇鰭片熱傳增強率熱阻
外文關鍵詞:piezofanheat sinkheat transfer enhancementthermal resistance
相關次數:
  • 被引用被引用:2
  • 點閱點閱:712
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研究指叉型壓電風扇與鰭片散熱特性的實驗,在此實驗中壓電風扇操作電壓為55V,透過改變參數方式觀察壓電風扇對於鰭片的散熱效果,參數包括鰭片種類(板狀鰭片、針狀鰭片)、風扇扇葉材料種類(麥拉、鋁合金、不鏽鋼)、扇葉寬度、風扇放置方式(水平式及衝擊流式)、熱源放置方式(水平、垂直)、風扇與進入鰭片的位置(X/L = 0, 0.5, 1)及深度。
其中由於扇葉材料不同,操作頻率、振幅也有所不同,非金屬扇葉的壓電風扇操作頻率相對於金屬扇葉的壓電風扇低,但振幅卻是金屬扇葉的壓電風扇的2-3倍。實驗中寬度較寬的壓電風扇性能優於扇葉寬度較窄者,熱傳增強率增加範圍在10%-50%,且熱阻的降低範圍在1.5-6 ℃/W,推測應與風扇寬度造成不同的流量有關。另外當麥拉(mylar)風扇為水平式擺放2種放置位置時,熱阻的減少較不明顯,減少範圍約在0.5~1℃/W,金屬扇葉的壓電風扇則相反,熱阻減少範圍在6-12℃/W。不論風扇放置形式為何,壓電風扇作動時熱傳增強率範圍在1.1~3.93,熱阻相較於自然對流降低約1%~75%。
This study investigated thermal performance of two typical types of heat sink cooled with a digit-like piezofan under several configurations. The present piezofans were operated at 50 Vpp with individual frequency. Effects including heat sink type and orientations, fan blade materials (mylar、Al、Stainless steel) and size, as well as fan locations were tested.
It can be observed that piezofans with metal blade usually have a higher frequency but less fan amplitude than polymer blade does. Besides, thermal performance of a heat sink with a piezofan having wider digit-like blade is always better than that with a piezofan having thinner digit-like blade under similar operation conditions. The heat transfer enhancement for a heat sink with a piezofan having wider blade is higher than that having thinner blade by 10% - 50% depending on operation conditions. In addition, the thermal resistance reduction was not evident for a horizontal piezofan with mylar blade regardless of the fan location. However, the thermal resistance reduction is more notable for a horizontal piezofan with metal blade. Among all test conditions in the study, the heat transfer enhancement ranges from 1.1 to 3.93 and the thermal resistance reduction ranges from 1% to 75% compared with corresponding results obtained under natural convection condition.
摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
符號說明 IX
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 自然對流鰭片熱傳 2
1.2.2 壓電風扇不同的扇葉設計 3
1.2.3 壓電風扇誘導的流場觀測 6
1.2.4 紅外線熱像儀觀測結果 13
1.2.5 風扇實際應用 16
1.3 研究目的 18
1.4 論文架構 19
第二章 理論介紹 20
2.1 壓電材料種類及特性 20
2.1.1 壓電材料種類 20
2.1.2 極化處理 21
2.1.3 壓電效應 21
2.1.4 壓電參數 23
2.2 熱傳學原理敘述 25
第三章 實驗系統 27
3.1 壓電風扇製作及尺寸說明 27
3-2 鰭片種類及尺寸說明 32
3.3 實驗設備 33
3-4 實驗參數總整理 40
3.5 實驗步驟 42
3.6 實驗數據分析 43
3.6.1 熱傳係數計算 43
3.6.2 鰭片效率 44
3.6.3 熱阻 47
3.6.4 Nu及Re定義 47
3.6.5 垂直放置板狀鰭片經驗公式 48
第四章 結果與討論 50
4.1 自然對流垂直放置鰭片 50
4.2 壓電風扇水平式擺放對於熱源散熱影響 51
4.2.1 不同材料、寬度壓電風扇在同位置下對熱源散熱影響 51
4.2.2 比較不同材料寬風扇於不同位置同深度對於熱源散熱影響 52
4.2.3 比較不同材料寬風扇於同位置不同深度對於熱源散熱影響 53
4.3 壓電風扇衝擊流式擺放對熱源散熱影響 59
4.3.1 比較寬風扇於不同位置同深度對於熱源散熱影響 59
4.3.2 比較寬風扇於同位置不同深度對於熱源散熱影響 60
4.4 水平式及衝擊流式的Nu及Re無因次分析 63
第五章 結論與未來建議 65
5.1 結論 65
5.2 未來建議 67
參考文獻 68
附錄 不準度分析 71
[1]D. W. van de Pol and J. K. Tierney, 1974, “Free Convection Heat Transfer from Vertical Fin-Arrays,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, No. 4, pp. 267-271.
[2]H. Yüncü and G. Anbar, 1998, “An experimental investigation on performance of rectangular fins on a horizontal base in free convection heat transfer,” Heat and Mass Transfer, vol. 33, pp. 507-514.
[3]R. T. Huang, W. J. Sheu, C. C. Wang, 2008, “Orientation effect on natural convective performance of square pin fin heat sinks,” International Journal of Heat and Mass Transfer, vol. 51, pp. 2368-2376.
[4]J. H. Yoo, J. I. Hong, W. Cao, 2000, “Piezoelectric ceramic bimorph coupled to thin metal plate as cooling fan for electronic devices,” Sensors and Actuators, vol. 79, pp. 8-12.
[5]T. Wu, P. I Ro, A. I Kingon and J. F Mulling, 2003, “Piezoelectric resonating structures for microelectronic cooling,” Smart Mater. Struct, vol. 12, pp. 181-187.
[6]M. Kimber, S. V. Garimella, A. Raman, 2006, “An Experimental Study of Fluidic Coupling Between Multiple Piezoelectric Fans,” IEEE Thermal and Thermomechanical Phenomena in Electronics Systems, pp. 333-340.
[7]M. Kimber, K. Suzuki, N. Kitsunai, K. Seki and S. V. Garimella, 2009, “Pressure and Flow Rate Performance of Piezoelectric Fans,” IEEE Transactions On Components And Packaging Technologies, vol. 32, No. 4, pp. 766-775.
[8]H. C. Chung, K. L. Kummari, S.J. Croucher, N.J. Lawson, S. Guo, R.W. Whatmore, Z. Huang, 2009, “Development of piezoelectric fans for flapping wing application,” Sensors and Actuators A: Physical, vol. 149, PP. 136–142.
[9]S. F. Liu, R. T. Huang, W. J. Sheu, Chi-Chuan Wang, 2009, “Heat transfer by a piezoelectric fan on a flat surface subject to the influence of horizontal/vertical arrangement,” International Journal of Heat and Mass Transfer, vol. 52, pp. 2565–2570.
[10]劉勝富,2009, “壓電風扇的散熱性能研究,” 碩士論文, 國立清華大學動力機械工程學系,新竹,台灣。
[11]A. Ihara and H. Watanble, 1994, On the Flow Around Flexible Plates Oscillating with Large Amplitude,” Journal of Fluids and Structures, vol. 8, pp. 601-619.
[12]M. Kimber, S. V. Garimella, 2002, “Numerical simulation of flow generated by a piezoelectric fan vibrating in its first mode,” ASME ME 608 Final Project Purdue University, pp 1-7.
[13]Y. H. Kim, S. T. Wereley, Chung-Hwan Chun, 2004, “Phase-resolved flow field produced by a vibrating cantilever plate between two endplates,” PHYSICS OF FLUIDS, vol. 16, pp. 145-162.
[14]T. Acıkalın, S. V. Garimella, A. Raman, J. Petroski, 2007, “Characterization and optimization of the thermal performance of miniature piezoelectric fans,” International Journal of Heat and Fluid Flow, vol.28, pp. 806-820.
[15]S. M. Wait, S. Basak, S. V. Garimella and A. Raman, 2007, “Piezoelectric Fans Using Higher Flexural Modes for Electronics Cooling Applications,” IEEE Transactions On Components And Packaging Technologies, vol. 30, pp. 119-128.
[16]劉崑毅, 2007, ”壓電風扇性能與散熱分析研究”, 碩士論文, 國立清華大學動力機械工程學系, 新竹, 台灣。
[17]M. K. Abdullah, M. Z. Abdullah, M. V. Ramana, C.Y. Khor, K. A. Ahmad, M. A. Mujeebu, Y. Ooi, Z. M. Ripin, 2009, “Numerical and experimental investigations on effect of fan height on the performance of piezoelectric fan in microelectronic cooling,” International Communications in Heat and Mass Transfer, vol. 36 pp. 51-58.
[18]張斯祈, 2009, “壓電風扇之流場分析研究”, 碩士論文, 國立清華大學動力機械工程學系, 新竹, 台灣。
[19]鄭釗, 2010, “應用雷射質點影像測速技術量測壓電風扇之流場特性”, 碩士論文, 國立高雄應用科大模具工程學系, 高雄, 台灣。
[20]吳炳澤, 2011, “應用雷射質點影像測速技術量測壓電風扇板鰭式散熱器之流場特性”, 碩士論文, 國立高雄應用科大模具工程學系, 高雄, 台灣。
[21]M. Kimber, S. V. Garimella, 2009, “Measurement and prediction of the cooling characteristics of a generalized vibrating piezoelectric fan,” International Journal of Heat and Mass Transfer, Vol. 52, pp. 4470-4478.
[22]M. Kimber, S. V. Garimella, 2009, “Cooling Performance of Arrays of Vibrating Cantilevers,” ASME Journal of Heat Transfer, vol.131, pp.(111401-1)-(111401-8).
[23]顏良益, 2011, “應用紅外線熱像量測壓電風扇板鰭式散熱器之熱傳特性研究”, 碩士論文, 國立高雄應用科大模具工程學系, 高雄, 台灣。
[24]T. AÇikalin, S. M. Wait, S. V. Garimella, A. Raman, 2004, “Experimental Investigation of the Thermal Performance of Piezoelectric Fans,” Heat transfer engineering, vol. 25, No. 1, pp. 4-14.
[25]W. J. Sheu , R. T. Huang, 2007, “Experimental Investigation on the Thermal Performance of Piezoelectric Fans for Electronic Cooling,” 中國機械工程學會, A01-0059, pp. 199-203.
[26]J. Petroski, M. Arik, M. Gursoy, 2010, “Optimization of Piezoelectric Oscillating Fan-Cooled Heat Sinks for Electronics Cooling,” IEEE Transactions On Components And Packaging Technologies, vol. 33, pp. 25-31.
[27]K. M. Ng, I. Sauciuc, H. Wada, N. Tanaka, 2010, “Cooling Performance of Piezoelectric Fan in Notebook System,” 34th International Electronic Manufacturing Technology Conference.
[28]M. K. Abdullah, N. C. Ismail, M. Z. Abdullah, M. A. Mujeebu, K. A. Ahmad, Z. M. Ripin, 2011, “Effects of tip gap and amplitude of piezoelectric fans on the performance of heat sinks in microelectronic cooling,” Heat Mass Transfer, DOI 10.1007/s00231-011-0944-Z.
[29]http://jpkc.nwpu.edu.cn/jpxin/gccsjs/class/8/8.1.2.htm
[30]H. Yi. Li, G. Long, M. H. Chiang, J. Y Lin, 2009, “Effect of a shiekd on the hydraulic and thermal performance of a plate-fin heat sink,” International Communications in Heat and Mass Transfer, vol. 36, pp. 233-240.
[31] 吳哲豪, 2019, “可調頻壓電樑之模型推導與振能回收研究”, 碩士論文, 國立台灣科技大學機械工程學系, 台北, 台灣。
[32] R. J. Moffat, 1988, “Describing the Uncertaintie Experimental Results,”Exp. Therm. Fluid. Sci, vol. 1, pp. 3-17.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊