(3.227.0.150) 您好!臺灣時間:2021/05/06 11:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃豐寅
研究生(外文):Fong-Yin Huang
論文名稱:牙科修復材料之表面形貌及微奈米刮痕研究
論文名稱(外文):The Study of Surface Morphology and Micro-nano Scratch on Dental Restorative Materials
指導教授:張國明李旺龍李旺龍引用關係
指導教授(外文):Kuo-Ming ChangWang-Long Li
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:153
中文關鍵詞:原子力學顯微鏡牙科修復材料微奈米刮痕機械性質
外文關鍵詞:Atomic Force MicroscopeDental Restorative MaterialMicro-nano ScratchMechanical Properties
相關次數:
  • 被引用被引用:1
  • 點閱點閱:455
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:83
  • 收藏至我的研究室書目清單書目收藏:2
本研究的目的在於探討Permite汞齊合金、SpectrumTPH複合樹脂、FiltekTM P60複合樹脂、GC Fuji II LC玻璃離子體等四種牙科修復材料及牙釉質表面的微奈米刮痕特性及機械性質。刮痕試驗前先以SEM、EDX、AFM和接觸角量測儀對試驗材料表面進行特性分析,之後再藉由MTS G200奈米壓痕試驗機與微小硬度試驗機量測材料表面機械性質。經由上述實驗結果將五種材料分為兩組,第一組為機械性質較佳的牙釉質、Permite汞齊合金與FiltekTM P60複合樹脂,第二組為機械性質較低的SpectrumTPH複合樹脂與GC Fuji II LC玻璃離子體。刮痕試驗利用AFM之液態探頭並以Lithography模式中的機械力方法於人工唾液環境下進行試驗。刮痕測試固定參數為速度20 μm/s、刮痕長度 2 μm以及刮痕次數 400至1600次。刮痕測試所施加的探針作用力第一組為10 μN,第二組為3 μN、6.5 μN。
經實驗結果可發現,第一組材料中Permite汞齊合金材料表面的刮痕損耗程度大於FiltekTM P60複合樹脂材料。另外FiltekTM P60複合樹脂材料在刮痕次數為800及1600次時的刮痕損耗程度與牙釉質材料相接近。在第二組材料中GC Fuji II LC玻璃離子體的刮痕損耗程度遠大於SpectrumTPH複合樹脂材料。針對探針的磨損分析,在第一組試驗中探針的尖端磨損程度由大到小分別為在牙釉質、Permite汞齊合金及FiltekTM P60複合樹脂材料中進行;在第二組試驗中探針的尖端磨損程度則以在GC Fuji II LC玻璃離子體材料中進行大於在SpectrumTPH複合樹脂的測試。
The purpose of this study was to discuss the micro-nano scratches and mechanical properties on the surfaces of four dental restorative materials which are Permite amalgam, SpectrumTPH composite resin, FiltekTM P60 composite resin, GC Fuji II LC resin-modified glass ionomer as well as enamel. Before scratching test, the characterizations of testing material surfaces were evaluated by SEM, EDX, AFM and contact angle measurement instrument. Then the mechanical properties of testing material surfaces were measured with MTS G200 nanoindentation and micro-hardness testing instruments. The five kinds of testing materials were divided into two groups through the above experimental results. The first group with better mechanical properties includes enamel, Permite amalgams and FiltekTM P60 composite resin。The second group with lower mechanical properties includes SpectrumTPH composite resin and GC Fuji II LC resin-modified glass ionomer.The scratching tests were performed in artificial saliva environment by AFM liquid probe with the method of mechanical force in the Lithography mode . The fixed parameters at the scratching tests are speed, scratching length and scratching times which are 20 μm/s, 2 μm and 400 to 1600 respectively. Probe forces used in the scratch test for the first group and second group are 10 μN as well as 3 μN and 6.5 μN in the second group.
For the first group, the scratching tests show that the wear condition of the Permite amalgam surface is severer than FiltekTM P60 composite resin material. In addition the wear conditions of FiltekTM P60 composite resin and enamel in the scratch number of 800 and 1600 times are similar. For the second group, the scratching tests show that the wear condition of the GC Fuji II LC glass ionomer surface is severer than the SpectrumTPH composite resin materials. In the wear analysis of the probe, the descending order of wear condition applied in test materials for the first group is enamel, Permite amalgams and FiltekTM P60 composite resin. For the second group, the probe tip wear condition applied in the GC Fuji II LC glass ionomer is severer than in the SpectrumTPH composite resin.
中文摘要-----------------------------------------------------------------------------------I
英文摘要--------------------------------------------------------------------------------II
誌謝----------------------------------------------------------------------------------------V
目錄--------------------------------------------------------------------------------------VII
表目錄--------------------------------------------------------------------------------- VIII
圖目錄----------------------------------------------------------------------------------IX
第一章 緒論---------------------------------------------------------------------------1
1.1 牙齒的剖面組織與型態--------------------------------------------------------5
1.2 生物醫用材料--------------------------------------------------------------------8
1.3 牙科修復材料-------------------------------------------------------------------11
1.3.1 汞齊合金(Amalgams Alloys)--------------------------------------------17
1.3.2 複合樹脂(Composite Resins)-------------------------------------------22
1.3.3 玻璃離子體(Glass-ionomer Coment)----------------------------------25
1.4 口腔的損耗機制---------------------------------------------------------------27
1.5 研究動機------------------------------------------------------------------------34
1.6 研究目的------------------------------------------------------------------------34
第二章 實驗材料製備方法與流程------------------------------------------36
2.1 實驗材料特性------------------------------------------------------------------36
2.2 試片製備方法------------------------------------------------------------------38
2.2.1 Permite Amalgam 汞齊合金材料--------------------------------------39
2.2.2 SpectrumTPH Compules® tips複合樹脂材料--------------------------40
2.2.3 FiltekTM P60複合樹脂材料----------------------------------------------41
2.2.4 GC Fuji II LC樹脂改良型玻璃離子體材料-------------------------42
2.2.5 自然牙牙釉質-------------------------------------------------------------44
2.2.6 浸泡溶液------------------------------------------------------------------46
2.3 試片前置流程------------------------------------------------------------------47
第三章 實驗設備與刮痕試驗流程------------------------------------------50
3.1 原子力學顯微術---------------------------------------------------------------50
3.1.1 原子力學顯微鏡基本架構與操作原理-------------------------------54
3.1.2 原子力學顯微鏡呈像原理----------------------------------------------56
3.2 實驗儀器------------------------------------------------------------------------62
3.2.1 原子力學顯微鏡機台----------------------------------------------------62
3.2.2 AFM探針-----------------------------------------------------------------65
3.2.3 分析設備-------------------------------------------------------------------67
3.3 刮痕試驗流程------------------------------------------------------------------70
第四章 結果與討論---------------------------------------------------------------72
4.1牙科修復材料與自然牙之表面形貌分析----------------------------------74
4.1.1 牙科修復材料之SEM與EDX分析-----------------------------------74
4.1.2 牙科修復材料之AFM表面形貌量測---------------------------------78
4.1.3 自然牙牙釉質之表面形貌分析----------------------------------------86
4.1.4 接觸角量測分析----------------------------------------------------------89
4.2 機械性質量測------------------------------------------------------------------92
4.3 刮痕試驗------------------------------------------------------------------------94
4.3.1 力與距離曲線量測之結果----------------------------------------------94
4.3.2 刮痕試驗之結果----------------------------------------------------------99
4.3.3 AFM探針於刮痕試驗前後的磨損情形-----------------------------117
第五章 結論------------------------------------------------------------------------121
參考文獻-----------------------------------------------------------------------------125
附錄---------------------------------------------------------------------------------131
Ι. 懸臂樑彈性係數校正-------------------------------------------------------131
個人簡歷-----------------------------------------------------------------------------137
[1]蔡潔娃、盧素涵, 2010,發掘齒科醫療器材的下一個藍海,金屬中心, 台北。
[2]林亭枝、謝天渝、吳逸民,”Oral Health Status of Health Examination Cases in Hospital”, 安泰醫護雜誌,12卷,3期,頁143-151。
[3]高益鳴主編, 2006,史丹佛家庭醫學百科全書-口腔疾病,史丹佛預防醫學有限公司,台北。
[4]Z. R. Zhou and J. Zhen, 2008, “Tribology of dental materials: a review”, Journal of Physics D : Applied Phyaics, Vol. 41, No. 113001, pp. 1-22.
[5]J. Hunter, 1778, The natural history of human teeth, J. Johnson, London.
[6]J. O. Grippo, M. Simring, and S. Schreiner, 2004, “Attrition, abrasion, corrosion and abfraction revisited : A new perspective on tooth surface lesions”, The Journal of The American Dental Association, Vol. 135, No. 8, pp. 1109-1118.
[7]C. F. Bodecker, 1945, “Local acidity: a cause of dental erosion-abrasion”, Annals of dentistry, Vol. 4, No. 1, pp. 50-55.
[8]G. F. Howden, 1971, “Erosion as the representing symptom in hiatus hernia: a case report”, British Dental Journal, Vol. 131, No. 10, pp. 455-456.
[9]B. G. N. Smith and J. K. Knight, 1948, “An index for measuring the wear of teeth”, British Dental Journal, Vol. 156, No. 12, pp. 435-538.
[10]M. P. Kelly and B. G. N. Smith, 1988, “The effect of remineralizing solutions on tooth wear in vitro”, Journal of Dentistry, Vol. 16, No. 3, pp. 147-149.
[11]J. O. Grippo, 1991, “Abfractions : a new classification of hard tissue lesions of teeth”, Journal of Esthetic and Restorative Dentistry, Vol. 3, No. 1, pp. 14-19.
[12]J. F. Cvar and G. Ryge, 1971, “Criteria for the clinical evaluation of dental restorative materials”, United States Public Health Service, pp. 1-6.
[13]J. J. Hefferren, 1976, “A laboratory method for assessment of dentifrice abrasivity”, Journal of Dental Research, Vol. 55, No. 4, pp. 563-573.
[14]R. Delong, and W. H. Douglas, 1983, “Development of an artificial oral environment for testing of dental restoratives : biaxial force and movement control”, Journal of Dental Research, Vol. 62, No. 1, pp. 32-36.
[15]J. R. Condon and J. L. Ferracane, 1996, “Evaluation of composite wear with a new multi-mode oral wear simulator”, Dental Materials, Vol. 12, No. 4, pp. 218-226.
[16]S. D. Heintze, 2006, “How to qualify and validate wear simulation devices and methods”, Dental Mater, Vol. 22, No. 8, pp. 712-34.
[17]J. L. Fuller, G. E. Denehy, and M.Schulein, 2006, “Concise dental anatomy and morphology”, The University of Iowa, pp. 11-12.
[18]高材、林康平、林峰輝、陳家進,2009,生物醫學工程導論,滄海書局,台北。
[19]S. V. Dorozhkin, 2009, “Calcium orthophosphates in nature”, Biology and Medicine, Materials, Vol. 2, No. 2, pp. 399-498.
[20]陳志平、林士淵、聶平琪,2005,General Practice in Dentistry II,潘同益等人編輯/台北市牙醫師公會,台北。
[21]R. H. Doremus, 1992, “Review bioceramics”, Journal of Materials Science, Vol. 27, No. 2, pp. 285-297.
[22]C. W. Lou, W. C. Chen, Y. S. Chen, S. P. Wen, C. W. Chang, and J. H. Lin, 2011, “Process technology and mechanical properties of polylactic acid ply yarns and 316L stainless steel braids”, Advanced Materials Research, Vol. 287-290, pp. 2656-2659.
[23]G. K. Triantafyllidis, A. V. Kazantzis, and K. T. Karageorgiou, 2007, “Premature fracture of a stainless steel 316L orthopaedic plate implant by alternative episodes of fatigue and cleavage decoherence”, Engineering Failure Analysis, Vol. 14, No. 7, pp. 1346-1350.
[24]E. Haynes, 1907, “Metal alloy”, United States Patent Office, No. 873, pp. 745.
[25]H. R. Bohlman, 1952, “Replacementreconstruction of the hip”, The American Journal of Surgery, Vol. 84, No. 3, pp. 268-278.
[26]A . T. Moore and H . R. Bohlman, 1943, “Metal hip joint”, The Journal of Bone & Joint Surgery, Vol. 25, No. 3.
[27]M. Long and H. J. Rack, 1998, “Titanium alloys in total joint replacement-a materials science perspective”, Biomaterials, Vol. 19, No. 18, pp. 1621-1639.
[28]E. P. Butler, 1985, “Transformation-toughened zerconia ceramics”, Materials Science and Technology, Vol. 1, No. 6, pp. 417-432.
[29]鐘國雄,2004,牙科材料學,合記圖書出版社發行,台北。
[30]王盈錦主編,2002,生物醫學材料,合記圖書出版社發行,台北。
[31]H. F. Albers, 2002, Tooth-colored restoratives : Principles and techniques, BC Decker Inc, United States.
[32]D. C. Smith, 1988, “Biocompatibility of dental materials”, Alpha Omegan, Vol. 81, No. 4, pp. 20-24.
[33]A. D. Wilson and B. E. Kent, 1972, “A new translucent cement for dentistry : The glass ionomer cement”, British Dental Journal, Vol. 132, No. 4, pp. 133-135.
[34]P. N. R. Pereiraa, T. Yamadaa, S. Inokosh, M. F. Burrowb, H. Sane, and J. Tagamia, 1998, “Adhesion of resin-modified glass ionomer cements using resin bonding systems”, Journal of Dentistry, Vol. 26, No. 5-6.
[35]J. M. Antonucci, J. E. McKinney, and J. W. Stansbury, 1988, “Resin-modified glassionomer cement”, US Patent Application, No. 160856.
[36]S. B. Mitra, 1989, “Photocurable ionomer cement system”, European Patent Application, No. EP0323120 A2.
[37]G. A. Tomlinson, 1927, “The rusting of steel surface in contact”, Proceedings of the Royal Society of London, Series A, Vol. 115, pp. 472-483.
[38]P. L. Hurricks, 1970, “The mechanism of fretting-a review”, Wear, Vol. 15, pp. 389-409.
[39]S. Habelitz, S. J. Marshall, G. W. Marshall, and M. Balooch, 2001, “The functional width of the dentin-enamel junction determined by AFM-based nanoscratching”, Journal of Structural Biology, Vol. 135, No. 3, pp. 294-301.
[40]H. Li and Z. R. Zhou, 2002, “Wear behaviour of human teeth in dry and artificial saliva conditionse”, Wear, Vol. 249, No. 10-11, pp. 980-984.
[41]Y. R. Jeng, T. T. Lin1, T. Y. Wong, H. J. Chang, and D. B. Shieh, 2008, “Nano-mechanical properties of fluoride-treated enamel surfaces”, Journal of Dental Research, Vol. 87, No. 4, pp. 381-385.
[42]G. Guidoni, M. Swain, and I. Jager, 2008, “Enamel : From brittle to ductile like tribological response”, Journal of Dentistry, Vol. 36, No. 10, pp.786-794.
[43]D. Devaprakasam, P. V. Hatton, G. Möbus, and B. J. Inkson, 2008, “Effect of microstructure of nano-and micro-particle filled polymer composites on their tribo-mechanical performance”, Journal of Physics, Vol. 126, No. 012057.
[44]P. A. Jones, E. Harrington, S. E. Fisher, and H. J. Wilson, 1986, “Standards for dental amalgam”, Journal of Dentistry, Vol. 14, No. 6, pp. 251-257.
[45]W. Weinmanm, C. Thalacker, and R. Guggenberger, 2005, “Siloranes in dental composites”, Dental Materials, Vol. 21, No. 1, pp. 68-74.
[46]K. Shinkai, S. Suzuki, and Y. Katoh, 2003, “In vitro wear rates of tooth-colored direct restoratives”, Chinese Journal of Dental Research, Vol. 3, pp. 82-90.
[47]M. A. Cattani-Lorentea, V. Dupuis, F. Moyac, J. Payanc, and J. M. Meyera, 1999, “Comparative study of the physical properties of a polyacid-modified composite resin and a resin-modified glass ionomer cement”, Dental Materials, Vol. 15, No. 1, pp. 21-32.
[48]A. D. Wilder, A. A. Boghosian, S. C. Bayne, H. O. Heymann, J. R. Sturdevant, and T.M. Roberson, 1998, “Effect of powder/liquidratio on the clinical and laboratory performance of resin-modified glass-ionomers”, Journal of Dentistry, Vol. 26, No. 4, pp. 369-377.
[49]N. Ilie and R. Hickel, 2009, “Investigations on mechanical behaviour of dental composites”, Clinical Oral Investigations, Vol. 13, No. 4, pp. 427-438.
[50]M. M. Freundlich, 1963, “Origin of the electron microscope”, Journal Storage, Vol. 142, No. 3589, pp. 185-188.
[51]D. McMullan, 1995, “Scanning electron microscopy 1928-1965”, Scanning, Vol. 17, No. 3, pp. 175-185.
[52]G. Binnig, C. Gerber, and C. Quate, 1986, “Atomic force microscope”, Physical Review Letters, Vol. 56, No. 9, pp. 930-933.
[53]H. T. Soh, K. W. Guarini, and C. F. Quate, 2001, Scanning probe lithography, Kluwer Academic Publishers , New York.
[54]C. Ton-That, A. G. Shard, and R. H. Bradley, 2000, “Thickness of spin-cast polymer thin films determined by angle-resolved XPS and AFM tip-scratch methods”, Langmuir, Vol. 16, No. 5, pp. 2281-2284.
[55]M. Bai, K. Kato, N. Umehara, Y. Miyake, J. Xu, and H. Tokisue, 2000, “Scratch-wear resistance of nanoscale super thin carbon nitride overcoat evaluated by AFM with a diamond tip”, Surface and Coatings Technology, Vol. 126, pp. 181-194.
[56]S. N. Magonov and M. H. Whangbo, 1996, Surface analysis with STM and AFM : Experimental and theoretical aspects of image analysis, VCH Verlagsgesellschaft MbH, Tokyo.
[57]黃英碩,2005,”掃描探針顯微術的原理及應用”,科儀新知,24卷,4期,頁1-17。
[58]Z. Kato, M. Sakairi, and H. Takahashi, 2007, “Fabrication of grooves on aluminum surface with atomic force microscope probe processing”, Journal of The Electrochemical Society, Vol. 148, No. 12, pp. 790-798.
[59]M. Baia, K. Katoa, N. Umeharaa, Y. Miyakeb, J. Xuc, and H. Tokisuec, 2000, “Scratch-wear resistance of nanoscale super thin carbon nitride overcoat evaluated by AFM with a diamond tip”, Surface and Coatings Technology, Vol. 126, No. 2-3, pp. 181-194.
[60]J. C. Huang, J. W. Lee, and C. L. Li, 2011, “Nano-scratching and nano-machining in different environments on CrN/Cu multiayer thin films”, Thin Solid Films, Vol. 519, No. 15, pp. 4992-4996.
[61]M. S. Al-Haik, S. Trinkle, D. Garcia, F. Yang, U. Martinez, H. Sumali, and S. Miltenberger, 2009, “Investigation of the nanomechanical and tribological properties of dental materials”, Inder Science Publishers, Vol.1, No.1, pp. 1-15.
[62]J. Zheng and Z.R. Zhou, 2007, “Friction and wear behavior of human teeth under various wear conditions”, Tribology International, Vol. 40, No. 2, pp. 278-284.
[63]J. H. Kim, M. Yoneya, J. Yamamoto, and H. Yokoyama, “Nano-rubbing of a liquid crystal alignment layer by an atomic force microscope : A detailed characterization”, Nanotechnology, Vol. 13, No. 2, pp. 133-137.
[64]J. Zheng, Z. R. Zhou, J. Zhang, and H. Li, H. Y. Yu, 2003, “On the friction and wear behaviour of human tooth enamel and dentin”, Wear, Vol. 255, No. 7-12, pp. 967-974.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔