(3.236.214.19) 您好!臺灣時間:2021/05/09 22:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:王士豪
研究生(外文):Shi-Hao Wang
論文名稱:混成奈米材料之有機太陽能電池研究
論文名稱(外文):Application of Hybrid Organic Solar Cell will Nanomaterials
指導教授:林明宏林明宏引用關係方得華方得華引用關係
指導教授(外文):Ming-Horng-LinTe-Hua Fang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:74
中文關鍵詞:奈米碳管氧化鋅有機太陽能電池
外文關鍵詞:carbon nanotubesZinc oxideorganic solar cells
相關次數:
  • 被引用被引用:1
  • 點閱點閱:340
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用奈米碳管和氧化鋅奈米粒子摻雜於有機太陽能電池的主動層P3HT/PCBM中,摻雜比率利用高濃度和溶解的方法去精準控制,使奈米碳管及氧化鋅奈米粒子可以均勻的分散在主動層P3HT/PCBM中,研究摻雜不同材料與濃度下對有機太陽能電池的影響,並且進一步探討材料特性、表面特性以及光電特性。研究發現摻雜奈米碳管會增加主動層P3HT/PCBM之吸收強度,並且提升電流密度與填充因子,電流密度從6.58 mA/cm2 提升至8.12 mA/cm2,填充因子從48.87 %提升至57.06 %,光電轉換效率跟電流密度及填充因子有直接關係,因此效率也從1.93 %提升至2.87 %,但是當摻雜量到達臨界值時會破壞結構,使得電流密度、填充因子與效率下降。摻雜氧化鋅粒子會降低主動層P3HT/PCBM之吸收強度,並且使電流密度與填充因子下降,電流密度從6.9 mA/cm2 下降至6.4 mA/cm2,填充因子從48.86 %下降至43.36 %,因此導致光電轉換效率從2.02 %下降至1.66 %,我們可以觀察出摻雜氧化鋅粒子並不會有與摻雜奈米碳管一樣先升後降之現象。本論文重點為摻雜不同材料於主動層P3HT/PCBM中對效率的影響作為主要探討,以摻雜材料能提高有機太陽能電池的光電轉換效率為主要目的。
This thesis examines the doping of the organic solar cells active layer P3HT:PCBM with carbon nanotubes and zinc oxide nanoparticles. To ensure even dispersion of the carbon nanotubes and zinco oxide nanoparticles, high concentrations were used with the dissolution method. This thesis further explores the impact of different types and varying concentrations of doping materials on the material, surface, optical, and electrical properties of organic solar cells. The study found that adding carbon nanotubes to the active layer P3HT:PCBM increases the absorption intensity while also increasing the current density from 6.58mA/cm2 to 8.12mA/cm2 and the fill factor from 48.87% to 57.06%. Correspondingly, the efficiency increased from 1.93% to 2.87% since photoelectric conversion efficiency directly depends on current density and fill factor. When the active layer is doped to the point of structure destruction, however, the current density reaches a critical value, and the fill factor and efficiency decline. Conversely, adding zinc oxide nanoparticles to P3HT:PCBM reduces its absorption intensity, resulting in the current density to decrease from 6.9 mA/cm2 to 6.4 mA/cm2 and the fill factor to decrease from 48.86% to 43.36%. This caused the photoelectric conversion efficiency to decline from 2.02% to 1.66%, contrasting with the rise and fall caused by the carbon nanotubes. Although this paper explores the influence of various doping materials on the efficiency of organic solar cells, it focuses on how different doping materials can improve the photoelectric conversion efficiency of organic solar cells.
摘要 ............................................................ I
ABSTRACT ....................................................... II
誌謝 ............................ ............................... IV
目錄 ............................................................ V
表目錄 .......................................................... VII
圖目錄 .......................................................... VIII
符號表 .......................................................... X
第一章 序論 ..................................................... 1
1.1 前言 ................................................... 1
1.2 太陽能電池 .............................................. 2
1.3 有機太陽能電池簡介 ....................................... 3
1.4 有機太陽能電池文獻回顧 ................................... 8 1.5 研究動機與背景 .............................................. 14
1.6 研究方法與目的 .......................................... 15
第二章 基本理論 ................................................. 16
2.1 太陽光模擬 ............................................. 16
2.2 轉移機制 ............................................... 17
2.3 光電轉換原理 ............................................ 18
2.4 等效電路 ............................................... 21
2.5 光電特性 ............................................... 22
2.5.1 開路電壓(Open Circuit Voltage,簡稱為VOC) ............. 23
2.5.2 短路電流(Short Circuit Current,簡稱為ISC ) ........... 24
2.5.3 填充因子(Fill Factor,簡稱為F.F.) ..................... 24
2.5.4 功率轉換效率(Power Conversion Efficiency,簡稱ηP) ..... 25
第三章 實驗流程 ................................................. 26
3.1 實驗架構 ............................................... 26
3.1.1 氧化銦錫玻璃基板清洗 .................................. 27
3.1.2 氧化銦錫玻璃基板蝕刻 .................................. 28
3.1.3 氧化銦錫玻璃基板表面處理 ............................... 29
3.1.4 旋轉塗佈電洞傳輸層 .................................... 29
3.1.5 旋轉塗佈主動層 ....................................... 29
3.1.6 金屬電極的蒸鍍與封裝 .................................. 30
3.2 實驗材料 .............................................. 31
3.3 實驗製程儀器介紹 ....................................... 38
3.4 實驗量測與分析儀器介紹 .................................. 44
第四章 結果與討論 .............................................. 48
4.1 摻雜不同濃度奈米碳管之材料分析 ........................... 49
4.1.1 紫外光吸收光譜儀(UV-VIS) ............................. 49
4.2 摻雜不同濃度奈米碳管之表面分析 ........................... 51
4.2.1 穿透式電子顯微鏡(TEM) ................................ 51
4.2.2 高解析分析電子顯微鏡(HR-AEM) ......................... 52
4.2.3 原子力顯微鏡(AFM) ................................... 53
4.3 摻雜不同濃度奈米碳管之太陽能電池特性分析 .................. 56
4.3.1 太陽光IV模擬器 ................ ...................... 56
4.4 摻雜不同濃度氧化鋅粒子之材料分析 ......................... 60
4.4.1 紫外光吸收光譜儀(UV-VIS) ............................. 60
4.5 摻雜不同濃度氧化鋅粒子之表面分析 ......................... 62
4.5.1 穿透式電子顯微鏡(TEM) ................................ 62
4.5.2 高解析分析電子顯微鏡(HR-AEM) .......................... 62
4.5.3 原子力顯微鏡(AFM) .................................... 64
4.6 摻雜不同濃度氧化鋅粒子之太陽能電池特性分析 ................. 67
4.6.1 太陽光IV模擬器 ....................................... 67
第五章 結論與未來方向 ........................................... 70
5.1 結論 .................................................. 70
5.2 未來方向 .............................................. 70
參考文獻 ....................................................... 71
[1] 楊素華,蔡泰成,科學發展,390期,2005年6月
[2] 楊德仁,顏怡文,“太陽能電池材料”, 五南圖書,2008年6月
[3] 查丁壬,“認識太陽能電池”, 中華太陽能聯誼會,2008年
[4] “太陽電池介紹與說明”國立虎尾科技大學材料科學與綠色能源工程研究所
[5] K. Okumoto, K. Wayaku, T. Noda, H. Kageyama, Y. Shirota, “Amorphous molecular materials: charge transport in the glassy state of N/N’ –di(biphenylyl) ,N’ -diphenyl- [1,1’-biph enyl] -4,4’ –diamines”, Synthetic Metals, Vol.111, pp. 473-476, 2000.
[6] A. J. Breeze, A. Salomon, D. S. Ginley, and B. A. Gregga, “Polyme r—perylene diimide heterojunction solar cells”, Applied Physics Letters, Vol.81,pp. 3085-3087, 2002.
[7] H. Neugebauer, C. Brabec, J. C. Hummelen, N. S. Sariciftci, “Stabili ty and photo degradation mechanisms of conjugated polymer/fullere ne plastic solar cells”, Solar Energy Materials & Solar Cells, Vol.61, pp. 35-42, 2000.
[8] 徐偉盛,“混合奈米碳管之高效率有機太陽電池應用”, 國立虎尾科技大學光電與材料科技研究所,碩士論文,2010
[9] 秦興國,“二氧化鈦奈米粒子摻混於有機感光層以提升高分子/富勒烯單層異質接面太陽能電池之光電轉換效率”, 國立成功大學化學工程研究所,碩士論文,2006
[10] B. O'Regan, M Graetzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, Vol.353, pp. 737-740, 1999.
[11] A. Yakimov, S. R. Forrest, “High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters”, Applied Physics Letters, Vol.80, pp. 1667-1669,2002.
[12] S. Kobayashi, T. Takenobu, S. Moria, A. Fujiwara, Y. Iwasa, “C60 thin-film transistors with high field-effect mobility, fabricated by molecular beam deposition” , Science and Technology of Advanced Materials, Vol.4, pp.371–375,2003.
[13] T. Martens, J. D’Haen, T. Munters, Z. Beelen, L. Goris, J. Manca, M.D’Olieslaeger, D. Vanderzande, L. De Schepper, R.Andriessenc, “Disclosure of the nanostructure of MDMO-PPV:PCBM bulk hetero-junction organic solar cells by a combination of SPM and TEM” , Synthetic Metals, Vol.138, pp.243–247,2003.
[14] J Gao, F Hide and H Wang, “Efficient photo detectors and photovoltaic cells from composites of fullerenes and conjugated polymers: photoinduced electron transfer” , Synthetic Metals, Vol.84, pp. 979-980,1997.
[15] K. M. Coakley, M. D. McGehee, “Conjugated Polymer Photovoltaic Cells”, Chem. Mater, Vol.16, pp. 4533-4542,2004.
[16] H. Kallmann, M. Pope, “Photovoltaic effect in organic crystals”, The Journal of Chemical Physics, Vol.30, pp. 585-586,1958.
[17] A. K. Ghosh, T. Feng, “Merocyanine organic solar cells”, Applied Physics Letters, Vol.49, pp. 5982-5989,1978.
[18] G. Yu, C. Zhang, A. J. Heeger, “Dual‐function semiconducting polymer devices: Light‐emitting and photodetecting diodes” , Applied Physics Letters , Vol.64,pp. 1540-1542,1994.
[19] 石政言,“利用元件後段處理與主動層有機溶劑改善有機太陽電池之短路電流密度”, 國立東華大學電機工程學系研究所,碩士論文,2005
[20] 徐瑋駿,“以二氧化鈦多孔性網狀結構與奈米粉末金屬氧化物之有機太陽能電池製作研究”, 國立中正大學機械工程所研究所,碩士論文,2008
[21] C. W. Tang, “Two-layer organic photovoltaic cell” , Applied Physics Letters ,Vol.48, pp. 183-185,1986.
[22] 廖啟鈞,“改變陰極對有機薄膜太陽能電池之研究”, 國立台灣科技大學電子工程系研究所,碩士論文,2007
[23] 陳盛煒,“MEH-PPV/Short-Length Carbon Nanotubes 光伏薄膜混摻 Alq3 的研究”, 國立中山大學光電工程學系,碩士論文,2006
[24] 陳婉如,光連雙月刊,56期, 2005年3月
[25] 丁彥傑,“高分子/奈米粒子混合型之薄膜太陽能電池之研製”, 崑山科技大學電機工程所,碩士論文,2008
[26] M. Grätzel, “Photoelectrochemical cells” , Nature , Vol.414, pp. 338-344, 2001.
[27] B. Kannan, K. Castelino, A. Majumdar, “Design of nanostructured
heterojunction polymer photovoltaic devices” , Nano Lett, Vol.3, pp.
1729-1733,2003.
[28] M. Reyes-Reyes, K. Kim, J. Dewald, R. Lopez-Sandoval, A. Avadhanula, S. Curran, D. L. Carroll, “Meso-structure formation for enhanced organic photovoltaic cells” , Org. Lett, Vol.7, pp. 5749-5752, 2005.
[29] S. Berson, R. de Bettignies, S. Bailly, S. Guillerez, and B. Jousselme, “Elaboration of P3HT/CNT/PCBM Composites for Organic Photovoltaic Cells”, Adv. Funct. Mater. , Vol.17, pp. 3363-3370 ,2007.
[30] P. W. Atkins, “Kurzlehrbuch physikalische Chemie”, Wiley-VCH, 2001.
[31] M. P. Thekaekara, “ The Solar Cell Constant and Solar Spectrum Measurement from a Research Aircraft”, NASA Technical Report, Number of pages 8,1970.
[32] 潘信宇,“以 PEDOT nanorods為介面緩衝層的高分子太陽能電池之研究”, 國立中山大學光電工程研究所,碩士論文,2008
[33] 李育釗,“混合奈米鑽石之高效率有機太陽能電池應用”, 國立虎尾科技大學光電與材料科技研究所,碩士論文,2011
[34] H. Hoppea,N. S. Sariciftci, “Organic solar cells: An overview”, Materials Research Society , Vol.19, pp. 1924-1945, 2004.
[35] J. Nelson, “Organic photovoltaic films”, Current Opinion in Solid State and Materials Science, Vol.6, pp. 87-95 ,2002.
[36] D. Chirvase, Z. Chiguvare, M. Knipper, J. Parisi, V. Dyakonov, J.C. Hummelen, “Electrical and optical design and characterisation of regioregular poly(3-hexylthiophene-2,5diyl)/fullerene-based heterojunction polymer solar cells”, Synthetic Metals, Vol.138, pp. 299-304 ,2003.
[37] 莊嘉琛,太陽能工程-太陽電池篇,全華圖書, 2008年6月
[38] C. Brabec, V. Dyakonov, J. Parisi, N. S. Sariciftci, “Organic Photovoltaics” ,Springer, Heidelberg,2003.
[39] S. Berson, R. de Bettignies, S. Bailly, S. Guillerez, and B.Jousselme, “Elaboration of P3HT/CNT/PCBM Composites for Organic Photovoltaic Cells” , Adv. Funct. Mater , Vol.17 ,pp. 3363–3370,2007.
[40] 劉修宏,“高效率高分子太陽能電池之研究”, 國立成功大學光電科學與工程研究所,碩士論文,2006
[41] 王裕文,“主要吸收層結構及電洞傳輸層對有機高分子混合型異質接面太陽能電池之影響”,國立東華大學電機工程學系研究所,碩士論文,2005
[42] G. Li, V. Shortriya, J. Huang, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processible polymer photovoltaic cells by self-organization of polymer blends” , Nat. Mater., Vol.4, pp.864–869, 2005.
[43] P. Vanlaekea, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, J. V. Manca, Sol. Energy Mater. Sol. Cells 90, 2150–2158, (2006).
[44] T. Martens, J. D’Haen, T. Munters, Z. Beelen, L. Goris, J. Manca, M. D’Olieslaeger, D. Vanderzande, L. De Schepper, R. Andriessen, “Disclosure of the nanostructure of MDMO-PPV:PCBM bulk hetero-junction organic solar cells by a combination of SPM and TEM”, Synthetic Metals, Vol.138, pp.243–247,2003.
[45] M. C. Wu, Y. Y. Lin, S. Chen, H. C. Liao, Y. J. Wu, C. W. Chen, Y. F. Chen, W. F. Su, “Enhancing light absorption and carrier transport of P3HT by doping multi-wall carbon nanotubes” , Chemical Physics Letters, Vol.468, pp.64–68,2009.
[46] W. H. Baek , T. S. Yoon , H. H. Lee , Y. S. Kim, “Composition- dependent phase separation of P3HT:PCBMcomposites for high performance organic solar cells” ,Organic Electronics, Vol.11, pp.933–937,2010.
[47] F. Padinger, R. S. Rittberger and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells” ,Adv. Funct. Mater., Vol.13, pp.85–88,2003.
[48] Y. Kim, S. A. Choulis, J. Nelson and D.C. Bradley, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene” , Appl. Phys. Lett., Vol.86, pp. 063502-1,2005.
[49] 施敏,“半導體元件物理與製作技術”, 第2版,pp.488-493,2002
[50] L. Liu, S. Member, IEEE, W. E. Stanchina, Member, IEEE, and G. Li1,Member, IEEE, “Enhanced Performance of Bulk Heterojunction Solar Cells Fabricated by Polymer:Fullerene:Carbon-Nanotube Composites” , Nanotechnology, pp. 233-236,2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔