(3.236.222.124) 您好!臺灣時間:2021/05/19 11:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:黃建維
研究生(外文):Huang Chien Wei
論文名稱:開口內腔受移動壁面驅動之混合對流研究
論文名稱(外文):Mixed Convection in a Lid-Driven Open Cavity
指導教授:許燦輝
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:79
中文關鍵詞:開口內穴移動壁面混合對流
外文關鍵詞:open cavitydriven lidmixed convection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:575
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本文以數值計算方法來模擬求解方形開口內穴裡牛頓系流體受移動壁面作用的混合對流熱傳問題,開口內穴之上下壁面保持絕熱,右側為開放形態,允許流體自由進出,左側垂直等溫壁面以等速度往上或朝下移動,流體因壁面加溫產生浮力與壁面移動之強制驅動雙重影響,內穴中之流體將產生迴流漩渦,部份流體會自內穴之開口上方流出,為彌補流出流體之空缺,等量之外界流體將由開口之下方流入。系統控制方程式有流線、動量及能量函數,經無因次化後配合適當之邊界條件以數值模擬方法求解,數值計算是用三次樣線交換方向定置法(SADI;Spline Alternating-Direction Implicit Method)並以個人電腦上求解,影響開口內穴混合對流內流場與熱場的數值參數主要有Reynolds 數,Prandtl數,Grashof數(或Ri數),以及相關開口大小與位置等參數。本文以內穴中流場與數據圖等幫助探討不同參數對整個內穴流場與熱傳之影響,結果顯示Pr、Re數與Gr數影響系統散熱頗明顯,另開口之形態也是散熱應考慮之重要因素。
Mixed convection in a lid-driven open cavity is numerically investigated in this study. The open cavity is constructed by two horizontal insulated walls and a vertical heated moving lid. The opposite wall to the heated moving lid is open to ambient. Due to the combined convection induced by buoyancy and moving wall, the ambient fluid flows into the cavity through the opening, thus a major recirculation flow with secondary eddies happens in the open cavity. Equal quantity of fluid may enter and exit the cavity via the opening. The governing equations include stream function, momentum function, and energy function. The controlled equations in dimensionless form coupled with corresponding boundary conditions are solved by using cubic spline collocation method in a personal computer. The governing parameters appearing in present study are Reynolds number, Re, Prandtl number, Pr, Grashof number, Gr (or Ri), and several material parameters of the configuration of the opening. The numerical results of the flow fields are discussed with plots of isotherm, streamline and the data configuration. The results indicate that the parameters Pr, Re, and Gr affect the heat transfer for the cavitysignificantly. In addition, the configuration of the opening also dominates the thermal field of the open cavity.
中文摘要……………………………………………………………………. i
英文摘要……………………………………………………………………. ii
致謝…………………………………………………………………………… iii
目錄…………………………………………………………………………… iv
表目錄………………………………………………………………………… vii
圖目錄………………………………………………………………………… viii
符號說明……………………………………………………………………… xiii
第一章 緒論………………………………………………………………… 1
1-1 研究目的與動機及其背景…………………………………… 1
1-2 相關文獻回顧………………………………………………… 1
1-3 研究方法……………………………………………………… 2
1-4 本文架構……………………………………………………… 3
第二章 理論分析…………………………………………………… 4
2-1 物理模型……………………………………………………… 4
2-2 基本假設……………………………………………………… 6
2-3 統馭方程式…………………………………………………… 6
2-4 系統的邊界狀況……………………………………………… 7
2-5 無因次化分析………………………………………………… 7
2-6 邊界條件……………………………………………………… 8
第三章 數值方法………………………………………………………… 10
3-1 數值解析………………………………………………………… 10
3-2 數值方法…………………………………………… 11
3-2.1 線函數表示法及其性質…………………… 12
3-2.2 利用三次樣線函數求解…………………………… 16
3-3.3 邊界條件之處理…………………………………… 20
3-3 解題方法與程序……………………………….……………….. 21
第四章 結果與討論………………………………………………………….. 23
4-1 數值方法正確性之測試……………...………………………… 23
4-2 格點測試…………………………..………………………………….. 23
4-3 開口模型對流場與熱傳的影響……………………………… 23
4-4 Re數對流場與熱傳的影響 25
4-5 浮力參數Ri對流場與熱傳的影響 25
4-6 參數Pr對流場與熱傳的影響 26
4-7 移動壁移動方向對流場與熱傳的影響 27
第五章 結論與建議………………………………………………………….. 75
5-1 結論……………………………………...……………………… 75
5-2 對未來研究之建議…………………………………………… 76
參考文獻……………………………………………………………………… 77
1.V. Semas and I. Kyriakids, Natural convection in an open cavity, in: Proc. the Seventh Ini. Heat Transfer Conf., Munich, 2, pp. 275-286, 1982..
2.Y. L. Chan and C. L. Tien, Laminar natural convection in shallow open cavities, J. Heat Transfer, 108, pp. 205-309, 1986.
3.C. F. Hess and R. H. Henze, Experimental investigation of natural convection loss from open cavities, J. Heat Transfer, 106, pp. 333-338, 1984
4.W. Chakroun, M. M. Elsayed, S. F. Al-Fahed, Experimental measurements of heat transfer coefficient in a partially/fully open tilted cavity, J. solar energy, 119, pp. 298-303, 1997.
5.M. M. Elsayed and W, Chakroun, Effect of aperture geometry on heat transfer in tilted partially open cavities, J. Heat Transfer, 121, pp. 819-827, 1999.
6.Le Quere, J.A. C. Humphrey, and F. S. H Sheman, Numerical calculation of thermally driven two-dimensional unsteady laminar flow in cavities of rectangular cross section, Numerical Heat Transfer, 4, pp. 249-283, 1981.
7.F. Penot, Numerical calculation of two-dimensional natural convection in isothermal open cavities, Numerical Heat Transfer, 5, pp. 421-437, 1982.
8.Y. L. Chan and C. L. Tien, A numerical study of two-dimensional natural convection in square open cavities, Numerical Heat Transfer, 8, pp. 65-80, 1985.
9.Y. L. Chan and C. L. Tien, A numerical study of two-dimensional natural convection in shallow open cavities, Int. Heat Mass Transfer, 28, pp. 603-612, 1985.
10.A. A. Mohamad, Natural convection in open cavities and slots, Numerical Heat transfer, 27, pp. 705-716, 1995..
11.Polat and E. Bilgen, Laminar natural convection in inclined open shallow cavities, Int. J. Thermal Sci., 41, pp. 360-368, 2002.
12.M. Miyamoto, T. H. Kuehn, J. Golstein, and Y. Katoh, Two-dimensional laminar natural convection heat transfer from a fully or partially open square cavity, Numerical Heat Transfer, part A, 15, pp. 411-430, 1989.
13..A. K. Chenak, M. Mbave, P. Basseur, and E. Bilgen, Mixed convection and conduction heat transfer in open cavities, Int. J. Heat Mass Transfer, 30, pp. 229-235, 1995.
14.A. A. Mohamad and R. Viskanta, Flow and heat transfer in a lid-driven cavity filled with a stably stratified fluid, Appl. Math. Math. Modelling, 19, pp. 465-472, 1995.
15.A. K Prasad and J. R. Koseff, Combined forced and natural convection heat transfer in a deep lid driven cavity flow, Int. J. Heat Fluid Flow, 17, pp. 460-467, 1996.
16.J. Chamkha, Hydromagnetic combined convection flow in a vertical lid-driven cavity with internal heat generation or absorption, Numerical Heat Transfer, Part A, 41, pp. 529-546, 2002.
17.A. Amiri, M. Khanafer, and I.Pop, Numerical simulation of combined thermal and mass transport in a square lid-cavity, Int. J. Thermal Sci. ,46, pp. 662-671, 2007.
18.M. A. R. Sharif, Laminar mixed convection in shallow inclined driven cavities with hot moving lid on top and cooled from bottom, Appl. Thermal Eng., 27, pp. 1036-1042, 2007.
19.T. H. Ji, S. Y. Kim, and J. M. Hyun, Transient mixed convection in an enclosure driven by a sliding lid, Int. J. heat Mass Transfer, 43, pp. 629-638, 2007.
20.F. Oztop, Combined convection heat transfer in porous lid-driven enclosure due to heater with fine length, Int. Commun. Heat Mass Transfer, 33, pp. 772-779, 2006.
21.P. Wang and R. Kahawita, numerical integration of partial differential equations using cubic splines, Int. J. Computer Mathematics, vol. 13, no. 3-4, pp. 271-286, 1983.
22.M. Napolitano, Efficient ADI and spline ADI methods for the steady state Navior-Stokes equations, Int. J. Numerical Methods in Fluids, vol. 4, pp. 1101-1115, 1984.
23.C. K. Chen, Application of cubic spline collocation method to solve transient heat transfer problem, Heat Transfer in Thermal System Seminar-Phase, N C. K. U., Tainan, Taiwan, pp. 167-182, 1986.
24.S. G.. Rubin and P. K. Khosla, Higher-order numerical solution using cubic splines, AIAA J. vol. 14, pp. 851-858, 1976.
25.R. Iwatsu, J. M. Hyun, and K. Kuwhara, Mixed convection in a driven cavity with a stable vertical temperature gradient, Int. J. Heat Mass Transfer, 25, pp. 1601-1608, 1993.
26.Khahil M. Khanafer and Ali J. Chamkha, Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium, Int. J. Heat Mass Transfer, 42, pp. 2465-2481, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top