(3.92.96.236) 您好!臺灣時間:2021/05/06 23:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張希誠
研究生(外文):Chang Hsi-cherng
論文名稱:摩擦攪拌銲接與惰氣鎢極電弧銲接對純銅機械特性比較
論文名稱(外文):Comparison of mechanical properties between friction stir welding and tungsten inert gas welding in pure copper
指導教授:林昭文博士
指導教授(外文):Dr. Jau-Wen Lin
學位類別:博士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:123
中文關鍵詞:摩擦攪拌銲接、 惰氣鎢極弧銲銲接、純銅、數值分析
外文關鍵詞:friction stir welding,tungsten inert gas welding,pure copper,numerical analysis,
相關次數:
  • 被引用被引用:0
  • 點閱點閱:785
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以純銅(C11000)為試料,以摩擦攪拌銲接及惰氣鎢極銲接為工具,研究兩種銲接方法對銅的接合處機械性質,包含接合微結構、拉伸、衝擊,比較與基材試片差異性。試片分為拉伸及衝擊兩種:拉伸試片為缺口形狀與無缺口形狀,缺口試片乃比較不同銲接方式,評估缺口拉伸強度(Notch tensile strength, NTS)及缺口強度比(Notch strength ration, NSR);衝擊試片則為銲接區與熱影響區,熱影響區一般均為銲接最弱處,有必要對此區域作探討。
本研究探討純銅(C11000)微結構,摩擦攪拌銲接因受回復與再結晶的機制,晶粒較細密,且銲接區因攪拌摩擦其硬度逐漸降低;而惰氣鎢極銲接銲接區硬度較摩擦攪拌的硬度低。經拉伸試驗後,摩擦攪拌銲接拉伸斷裂處出現在熱影響區,而惰氣鎢極銲接則有氫脆現象,此一現象可能因銲接過程之水蒸氣分解成氫及氧;缺口拉伸強度及缺口強度比,摩擦攪拌銲接(212MPa、1.10)比惰氣鎢極銲接(190MPa、1.02)高很多;衝擊試驗分為銲接區及熱影響區吸收能量,摩擦攪拌為(2.87J、2.25J)而惰氣鎢極銲接(1.32J、0J)。顯示摩擦攪拌優於惰氣鎢極銲接,且惰氣鎢極銲接熱影響區受氫影響造成無法吸收能量。經實驗與探討後得知,純銅經摩擦攪拌後,攪拌區之微細晶粒可提升試片之拉伸延性及衝擊吸收能。表示此一銲接方式對純銅有良好效果,且能量耗費也較省,可節省材料及資源成本。
數值分析利用商用軟體ABAQUS/STANDERD模擬,得到結果與實驗結果吻合,且應力分佈最高溫處於銲接接合處與理論產生局部高溫位置吻合,殘留應力並未使板變形扭曲。
This research adopted pure copper (C11000) as specimens with friction stir and tungsten inert gas welding as tool. By using these two welding approaches to join pure copper, the mechanical properties including microstructure, tensile, impact, cat of pure copper were investigated. The specimens were divided into tensile and impact specimens: tensile specimens were notched and non-notched specimens. The notched specimens were used to compare different welding methods by analyzing the notch tensile strength (NTS) and notch strength ratio (NSR). Moreover, the impact specimens were divided into weld zone and heat affected zone. Generally, the weakest spot of welding joint is in the heat affected zone. Therefore, further investigation was implemented for this zone.
This research investigated the microstructure of pure copper (C11000) and discovered that recrystallization mechanism during friction stir welding led to relatively finer crystallines. Besides, the hardness of weld zone gradually decreased due to the friction stir at weld zone. The hardness of weld zone for tungsten inert gas welding was lower than friction stir welding. The tensile test revealed that tensile cracks occurred at heat affected zone in friction stir welding, while hydrogen embrittlement was present in tungsten inert gas welding. This phenomenon suggested that steam split into hydrogen and oxygen during the welding process. The notch tensile strength and notch strength ratio for friction stir welding(212MPa、1.10) were significantly higher than tungsten inert gas welding (190MPa、1.02). In addition, the impact tests were divided into weld zone and heat affected zone, which showed energy absorption of (2.87J、2.25J) for friction stir welding and (1.32J、0J) for tungsten inert gas welding. Therefore, friction stir welding surpassed tungsten inert gas welding. Due to the influence of hydrogen at the heat affected zone, energy could not absorb for tungsten inert gas welding. From the experiment and investigation, it was revealed that friction stir of pure copper produced fine crystallines at the stir zone which enhanced tensile ductility and impact energy absorption of the specimens. Therefore, friction stir welding is a good welding approach which can reduce energy consumption, material consumption and resource cost.
Data analysis adopted ABAQUS/STANDARD, a finite element analysis program for simulation and data obtained were identical with experimental results. Furthermore, highest stress distribution at welding joint agrees with the theory indicating presence of regional high temperature and the residual stress did not cause distortion to the plate.
總 目 錄
中文摘要 ............................................................Ⅰ
英文摘要 ............................................................Ⅲ
誌 謝 ............................................................Ⅴ
總 目 錄 ............................................................Ⅵ
表 目 錄 ............................................................Ⅸ
圖 目 錄 ............................................................Ⅹ
第一章 緒 論........................................................1
1-1 研究動機與目的..................................................1
1-2 研究背景........................................................4
1-3 研究方法........................................................5
1-4 本文架構........................................................6
第二章 文獻回顧及基本原理..............................................8
2-1 摩擦攪拌銲接....................................................8
2-1-1 摩擦攪拌接合..................................................8
2-1-2 回復與再結晶..................................................14
2-1-2-1回復.........................................................14
2-1-2-2再結晶.......................................................15
2-1-3 溫度產生原理..................................................18
2-1-3 攪拌刀具選擇..................................................20
2-1-4 攪拌刀具幾何形狀..............................................22
2-1-5 銲接參數.....................................................25
2-2 惰氣鎢極弧銲....................................................28
2-2-1 基本理論.....................................................28
2-2-2 銲接參數對品質的影響...........................................29
2-3 純銅種類.......................................................30
2-4 缺口拉伸強度(Notch tensile strength, NTS)及缺口強度比(Notch strength ratio, NSR) ..............................................31
第三章 實驗方法與結果討論.............................................32
3-1 攪拌工具設計....................................................32
3-2 試片製作.......................................................32
3-3 熱量輸入(Heat input)計算.........................................33
3-4 微硬度分佈及微觀組織.............................................34
3-5 拉伸試驗.......................................................35
3-6 衝擊試驗.......................................................36
3-7 結果與討論......................................................48
3-7-1 微結構組織與分析..............................................48
3-7-2 拉伸試片分析..................................................51
3-7-3 衝擊韌性分析..................................................56
3-8 結論..........................................................89
第 四 章 數值分析 ....................................................90
4-1 前言............................................................90
4-2 文獻回顧........................................................92
4-3問題定義與分析目標.................................................93
4-4 數學模式........................................................96
4-4-1統御方程式......................................................96
4-4-2後向差分法......................................................97
4-5結果與討論.......................................................100
第五章 總結論.......................................................106
參考文獻...........................................................108
簡歷...............................................................123
參考文獻
(1) Y.F. Sun, H. Fujii, 2010, “Investigation of the welding parameter dependent microstructure and mechanical properties of friction stir welded pure copper” , Materials Science and Engineering A, Vol. 527, pp. 6879-6886.
(2) H.J. Liu, J.J. Shen, Y.X. Huang, L.Y. Kuang, C. Liu, C. Li, 2009, “ Effect of tool rotation rate on microstructure and mechanical properties of friction stir welded copper” , Science and Technology of Welding and joining, Vol.14. pp. 577-583.
(3) Y.M. Huang, P.L. Fan, C.H. Lin, 2010, “ Experimental study on friction stir welding of copper metals”, Journal of Materials Processing Technology, Vol. 270,
pp. 1667-1672.
(4) Hidetoshi Fujii., 2011, “Friction Stir Welding of Steel” , Welding International,
Vol. 25, pp. 260-273.
(5) Dhananjayulu Avula, Ratnesh Kumar Raj Singh, D.K. Dwivedi, N.K. Mehta, 2011, “Effect of Friction Stir Welding on Microstructural and Mechanical Properties of Copper Alloy”, World Academy of Science Engineeringand Technology,
Vol. 74, pp. 214-222.
(6) 劉國雄,林樹均,李勝隆,鄭晃忠,葉均蔚, 1998,工程材料科學,
全華科技圖書公司,台北。pp. 527-547.
(7) Lars Cederqvist, Tomas Oberg, 2008, “Reliability study of friction stir welded
copper canisters containing Sweden’s nuclear waste”, Reliability Engineering and
System Safety, Vol. 93, pp. 1491-1499.
(8) R.S. Mishra, Z.Y. Ma, 2005, “ Friction Stir Welding and processing”,
Materials Science and Engineering R, Vol. 50, pp. 1-78.
(9) A. K. Lakshminarayanan, V. Balasubramanian, M. Salahuddin, 2009,
“ Microstructure, Tensile and Impact Toughness properties of friction stir
Welded mild steel”, Journal of iron and steel research, International, Vol. 17,
pp. 68-74.
(10) M.M. Shtrikman, 2008, “Current state and development of friction stir welding
Part 3. Industrial application of friction stir welding”, Welding International,
Vol. 22, pp. 806-815.
(11) M. Ericsson, R. Sandstrom, 2003, “ Influence of welding speed on the fatigue
of friction stir welds, and comparison with MIG and TIG” ,
International Journal of Fatigue, Vol. 25, pp. 1379-1387.
(12) C.W. Sinclair, W.j. Poole, Y. Brechet, 2006, “ A model for the grain size dependent work hardening of copper”, Scripta Materialia, Vol. 55. pp. 739-742.
(13) K.V. Jata, S.L. Semiatin, 2000, “Continuous dynamic recrystallization during
friction stir welding of high strength aluminium”, Scripta Materialia, Vol. 43.
pp. 743-749.
(14) G.M. Xie, Z.Y. Ma, L. Geng, 2007, “Development of a fine-grained
microstructure and the properties of a nugget zone in friction stir welded pure copper”, Scripta Materialia, Vol. 57, pp. 73-76.
(15) B. Heinz, B. Dkrotzki, 2002, “Characterization of a friction stir welded
Aluminium alloy 6013”, Metallurgical and Materials Transactions B, Vol. 33,
pp. 489-498.
(16) C.M. Hu, C.M. Lai, P.W. Kao, N.J. Ho, J.C. Huang, 2009, “Solute-enhanced
tensile ductility of ultrafine-grained Al-Zn alloy fabricated by friction stir
processing”, Scripta Materialia, Vol. 60, pp. 639-642.
(17) J.J. Shen, H.J. Liu, F. Cui, 2010, “Effect of welding speed on microstructure
And mechanical properties of friction stir welded copper”, Materials and Design, Vol.31, pp. 3937-3942.
(18) C.G.Rhodes, M.W. Bingel, R.A. Spurling, C.C. Bampton, 1997, “Effects of friction stir welding on microstructure of 7075 aluminum.”, Scripta Materialia, Vol. 36, pp. 69-75.
(19) P.S. Pao, S. J. Gill, C.R. Feng, K.K. Sankaran, 2001, “Corrosion-fatique crack growth in friction stir welded Al 7075”, Scripta Materialia, Vol. 45, pp. 605-612.
(20) H. Liu, H. Fujii, M. Maeda, K. Nogi, 2003, “ Tensile properties and fracture
locations of friction-stir welded joints of 6061-T6aluminium alloy”,
Journal of Materials Science Letters, Vol. 22, pp. 1061-1063.
(21) J.Q. Su, T.W. Nelson, R. Mishra, M. Mahoney, 2003, “ Microstructural
investigation of friction stir welded 7050-T651 aluminium”, Acta Materialia,
Vol.51, pp. 713-729.
(22) W.B. Lee, Y.M. Yeon, S. B. Jung, 2003, “The improvement of mechanical properties of friction-stir-welded A356 Al alloy”, Materials Science and Engineering A, Vol.355, pp. 154-159.
(23) R. Nandan, T. DebRoy, H. K. H. Bhadeshia, 2008, “Recent Advances in Friction Stir Welding – Process, Weldment Structure and Properties”, Progress in Material Science, Vol. 53, pp 980-1023.
(24) P. Xue, g.m. Xie, B.L. Xiao, Z.Y. Ma, L. Geng, 2010, “Effect of Heat Input Conditions on Microstructure and Mechanical Propertiws of Friction Stir Welded Pure Copper”, Metallurgical and Materials Transcation A, Vol.41A,
pp. 2010-2021.
(25) Won-Bae Lee, Seung-Boo Jung, 2004, “The joint properties of copper by friction stir welding”, Materials Letters, Vol. 58, pp. 1041-1046.
(26) H. Khodaverdizadeh, A. Mahmoudi, A. Heidarzadeh, E. Nazari, 2012, “Effect of friction stir welding parameters on strain hardening behavior of pure copper joint”, Materials and Design, Vol. 35, pp. 330-334.
(27) Y. F. Sun, H. Fujii, 2011, “The effect of SiC particales on the microstructure and mechanical properties of friction stir welded pure copper joints”, Materials Science and Engineering A, Vol. 528, pp. 5470-5475.
(28) Hwa Soon Park, Byung Woo Lee, Taichi Murakami, Kazuhiro Nakata,
Masao Ushio, 2008, “Friction Stir Welding of Oxygen Free Copper and
60%Cu—40%Zn Copper Alloy”, Materials Science Forum, Vol. 580-582,
pp. 447-450.
(29) Z. Barlas, H. Urun, 2008, “Microstructure and mechanical properties of friction stir butt welded dissimilar Cu/CuZn30 sheets”, Journal of Achievements in Materials and Manufacturing Engineering, Vol. 30, pp. 182-186.
(30) L. Cederqvist, O. Garpinger, T. Hagglund, A. Robertsson, 2012, “Cascade control
of the fricton stir welding process to seal canister for spent nuclear fuel”, Control Engineering Practice, Vol. 20, pp. 35-48.
(31) Terese Kallgren, 2005, “Friction Ster Welding of Copper Canisters for Nuclear Waste”, Licentiate Thesis, Royal Institute of Technology, Sweden.
(32) P. Da, R. Jayaganthan, I.V. Singh, 2011, “Tensile and impact-toughness behaviour of cryorolled al 7075 alloy”, Matrials and Design, Vol. 32, pp. 1298-1305.
(33) 王木琴,民國87年,機械材料,台灣復文興業股份有限公司,台南。
pp. 101-104。
(34) 劉國雄,林樹均,李勝隆,鄭晃忠,葉均蔚, 1998,工程材料科學,
全華科技圖書公司,台北。pp. 334-338.
(35) F.J. Humphreys, M. Hatherly, 1995, Recrystallization and Related Annealing Phenomena, pp.3 63-392.
(36) T.R. McNelley, S. Swaminathan, J.Q. Su, 2008, “ Recrystallization mechanisms during friction stir welding/ processing of aluminum alloys”, Acta Materialia, Vol.58, pp. 349-354.
(37) F. Montheillet, O. Lurdos, G. Damamme, 2009, “A grain scale approach for modeling steady-state discontinuous dynamic recrystallization”, Acta Materialia, Vol. 57, pp. 1602-1612.
(38) T. Sakai, J. J. Jonas, 1984, “Dynamic Recrystallization:Mechanical and Microstructural Considerations”, Acta Metallurgica, Vol. 32, pp.189-209.
(39) 張榮洲,民國93年,"抽線道次對銅伸線機械性質的影響",國立成功大學機械工程學系碩士論文。
(40) 黃國聰,民國97年,"鋁-鎂合金拉伸與振動破壞特性之摩擦攪拌效應研究” 國立成功大學材料科學及工程學系,博士論文。
(41) H.J. McQueen, C.A.C. Imbert, 2004, “ Dynamic recrystallization: plasticity
enhancing structure development”, Journal of alloys and compounds, Vol. 378.
pp. 35-43.
(42) G. Benchabane, Z. Boumerzoug, I. Thibon, T.Gloriant, 2008, “Recrystallization of pure copper investigated by calorimetry and microhardness”,
Materials Characterization, Vol. 59, pp. 1425-1428.
(43) Kun Shen, Mingxing Guo, Mingpu Wang, 2010, “ Recrystallization characveristics of a fine grained copper alloy”, Materials Chemistry and Physics,
Vol. 120, pp.709-714.
(44)Φ. Frigaard, Φ. Grong, O.T. Midling, 2001, “ A Process model for friction
stir welding of age hardening aluminum alloys”,
Metallurgical and Materials Transaction A, Vol. 32A, pp. 1189-1200.
(45) Tsutomu Tanaka, Taiki Morishige, Tomotake Hirata, 2009, “ Comprehensive
Analysis of joint strength for dissimilar friction stir welds of mild steel to
aluminum alloys”, Scripta Materialia, Vol. 61, PP. 756-759.
(46) A. Arora, T. DebRoy, H.K.D.H. Mhadehia, 2001, “ Back-of-the-envelope
calculations in friction stir welding-Velocities, peak temperature, torque, and
hardness”, Acta Materialia, Vol. 59, pp. 2020-2028.
(47) M.Z.H. Khandkar, J.A. Khan, A.P. Reynold, 2003, “Prediction of temperature
distribution and thermal history during friction sir welding: input torque based
model”, Science and Technology of Welding and Joining, Vol. 8, pp.165-174.
(48) Y. D. Chung, H. Fujii, R. Ueji, N. Tsuji, 2010, “Friction stir welding of
high carbon steel with excellent toughness and ductility”,
Scripta Materialia, Vol. 63, pp. 223-226.
(49) R. Ri, A. De, H.K..D.H. Bhadeshia, T. DebRoy, 2011, “ Review: friction stir welding tool”, Science and Technology of Welding and Joining, Vol. 16,
pp. 325-342.
(50) K Nakata, 2005, “Friction stir welding of copper and copper alloys”,
Welding International, Vol. 19(12), pp. 929-933.
(51) T.J. Lienert, W.L. Steelwag, Jr., B.B. Grimmett, R.W. Warke, 2003,
“ Fricton stir welding studies on mild steel”, Welding Journal, Vol. 82, pp. 1s-9s.
(52) K.Kumar, Satish V. Kailas, 2008, “ The role of friction stir welding tool on material flow and weld formation”, Materials Science and Engineering A,
Vol. 485, pp. 367-374.
(53) A. Arora, A. De, T. DebRoy, 2011, “Toward optimum friction stir welding
tool shoulder diameter”, Scripta Materialia, Vol. 64, pp.9-12.
(54) Shigeki Hirasawa, Harsha Badarinarayan, Kazutaka Okamoto,
Toshio Tomimura, 2010, “Analysis of effect of tool geometry on plastic flow
During friction stir Spot welding using particle method”, Journal of Materials
Processing Technology, Vol, 210, pp. 1455-1463.
(55) P.-C. Lin, J. Pan, T. Pan, 2008, “Failure modes and fatigue life estimations of spot friction weld in lap-shear specimens of aluminum 6111-T4sheets. Part 1: Welds made by a concave tool”, International Journal of Fatigue,Vol. 30, pp.74-89.
(56) P.-C. Lin, J. Pan, T. Pan, 2008, “Failure modes and fatigue life estimations of spot friction weld in lap-shear specimens of aluminum 6111-T4 sheets. Part 2: Welds made by flat tool”, International Journal of Fatique, Vol. 30, pp. 90-105.
(57) L.Cederqvist, C.D. Sorensen, A.P. Reynolds, T. Oberg, 2009, “Improved process stability during friction stir welding of 5cm thick copper canisters through shoulder geometry and parameter studies”, Science and Technology of Welding and Joining, Vol. 14, pp. 178-184.
(58) S.M. Chowdhury, D.L. Chen, S.D. Bhole, X. Cao, 2010, “Tensile properties of a friction stir welded magnesium alloy: Effect of pin thread orientation and weld pitch”, Materials Science and Engineering A, Vol. 527, pp. 6064-6075.
(59) Paul A. Colegrove, Hugh R. Shercliff, 2005, “3-Dimensional CFD modeling of
flow round a threaded friction stir welding tool profile”, Journal of Materials
Processing Technology, Vol. 169, pp. 320-32.
(60) Therese Kallgren, 2005, “Friction stir welding of copper canisters for nuclear
waste”, Licentiate Thesis, Department of Materials Science and Engineering,Royal Institute of Technology, Sweden.
(61) Serop Kalpakjian, Steven R. Schmid, 2006, Manufacturing Engineering and Technology, Prentice Hall, Singapore, pp. 944-948.
(62) 劉信男,1994,TIG銲接實務與電阻點銲技術,全華科技圖書公司,台北。
(63) Zheng Xiulin, Wang Hong, Zheng Maosheng, Wang Fenghui, 2008,
Notch Strength and Notch Sensitivity of materials, Science Press.
(64) George E. Dieter, David Bacon, 1988, Mechanical Metallurgy, McGraw-Hill,
pp. 314-316.
(65) Sindo Kou, 1987, Welding Metallurgy, John Wiley & Sons, pp. 1-57.
(66) Standard Test Methods for Determining Average Grain Size, ASTM E112, 2010.
(67) B. Younise, A. Sedmak, M. Rakin, N. Gubeljak, B. Medjo, M. Burzic, M. Zrilic, 2012, “Micromechanical analysis of mechanical heterogeneity effect on the ductile tearing of weldments”, Materials and Design, Vol. 37, pp. 193-201.
(68) I. Penuelas, C. Betegon, C. Rodriguez, 2006, “A ductile failure model applied to the determination of the fracture toughness of welded joints. Numerical simulation and experimental validation”, Engineering Fracture Mechanics, Vol. 73,
pp. 2756-2773.
(69) M. Rakin, N. Gubeljak, M. Dobrojevic, A. Sedmak, 2008, “Modelling of ductile fracture initiation in strength mismatched welded joint”,
Engineering Fracture mechanics, Vol. 75, pp. 3499-3510.
(70) R. Chhibber, P. Biswas, N. Arora, S. R. Gupta, B.K. Dutta, 2011, “ Micromechanical modeling of weldment using GTN model”,
International Journal of fracture, Vol. 167, pp. 71-82.
(71) T. Wang, J.G. Yang, X.S. Liu, Z.B. Dong, H.Y. Fang, 2012, “Stress intensity factor expression for center-cracked butt joint considering the effect of joint shape”, Materials and Design, Vol. 35, pp. 72-79.
(72) Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM E23, 2005.
(73) 王希靖,達朝炳,李晶,張忠科,2006,”紫銅的攪拌摩擦銲工藝與接頭性能分析”第32卷,第4期,第25頁—第28頁,8月,蘭州理工大學學報,
蘭州。
(74) 邢 麗,孫德超,柯黎明,張彥富, 2003,”紫銅攪拌摩擦焊接工藝研究及接頭組織分析”第22卷,第6期,第986頁—第988頁,11月,機械科學與
技術,南昌,江西。
(75) A. K. Lakshminarayanan, V. Balasubramanian, K. Elangovan, 2009, “Effect of welding processes on tensile properties of AA6061 aluminium alloy joint”, International Journal of Advanced Manufacturing Technology, Vol. 40,
pp. 286-296.
(76) Daniel Henkel, Alan W. Pense, Structure and Properties of Engineering Materials, 5th, McGraw-Hill, pp. 98-105.
(77) Standard Test Methods for Tension Testing of Metallic Materials, ASTM, 2009.
(78) 向四海,楊馥源,民國93年,”不同熱間擠製比下之鎂合金矩形管之成形性探討,” 中國機械工程學會第二十一屆全國學術研討會論文集,國立中山大學,高雄。
(79) A. K. Lakshminarayanan, V. Balasubramanian, 2011 “Tensile and Impact Toughness Properties of Gas Tungsten Arc Welded and Friction Stir Welded Interstitial Free Steel Joints”, Journal of Materials Engineering and Performance, Vol. 20, pp. 82-89.
(80) 陳兆勛譯,民國88年,破裂力學之實際應用, 國立編輯館,台北。
(81) Y. S. Sato, H. Kokawa, 2001, “Distribution of Tensile Property and Microstructure
In Friction Stir Weld of 6063 Aluminum ”,
Metallurgical and Materials Transactions A, Vol.32A, pp. 3023-3031.
(82) 劉小文,鄢君輝,薛朝改,段立宇,2003,”銅板攪拌摩擦焊接頭金相組織及力學性能”,第24卷,第6期,第47-50頁,12月,焊接學報,哈爾濱。
(83) 邢 麗,黃春平,柯黎明,肖 兵,2004,”紫銅的攪拌摩擦焊接頭組織與電學性能測試”,第18卷,第4期,第100-103頁,12月,南昌航空工業學院學報,南昌。
(84) T. J. Carter, L. A. Cornish, 2001, “Hydrogen in metals”, Engineering Failure
Analysis, Vol. 8, pp. 113-121.
(85) M. R. Louthan Jr., 2008, “ Hydrogen Embrittlement of metals: A Primer for the Failure Analyst”, J Fail. Anal. And Preven, Vol. 8, pp. 289-307.
(86) Andrzej Ambroziak, 2010, “ Hydrogen damage in friction welded copper joints”, Materials and Design, Vol. 31, pp. 3869-3874.
(87) Richard W. Hertzberg, 1989, Deformation and Fracture Mechanics of Engineering
Materials, 3rd ed, John Wily and Sons, pp. 257-258.
(88) Richard W. Hertzberg, 1989, Deformation and Fracture Mechanics of Engineering
Materials, 3rd ed, John Wily and Sons, pp. 254-257.
(89) L.W. Tsay, W. C. Lee, R. K. Shiue, J. K. Wu, 2002, “ Notch tensile properties of laser-surface- annealed 17-4PH stainless steel in hydrogen-related environments”, Corrosion Science, Vol. 44, pp. 2101-2118.
(90)Peng Liu, Yajiang Li, Haoran Geng, Juan Wang, 2007, “Microstructure
characteristics in TIG welded joint of Mg/Al dissimilar materials”,
Materials Letters, Vol. 61, pp. 1288-1291.
(91) Toshikatsu Asahina, Hiroshi Tokisue, 2001, “Electron Bean Weldability of Pure Magnesium and AZ31 Magnesium Alloy”, Materials Transactions, Vol.42,
pp. 2345-2353.
(92) W. F. Hosford, 2005, Mechanical Behavior of Materials,
Cambridge University Press, pp. 210-217.
(93) T. L. Anderson, 2000, Fracture Mechanics: Fundamentals and Application,
CRC Press. pp. 301-322.
(94) J. W. Huychinson, V. Tvergaard, 1980, “Surface instabilities on statically strained plastic solids”, International Journal of Mechanical Sciences, Vol. 22,
pp. 339-354.
(95) Richard W. Hertzberg, 1989, Deformation and Fracture Mechanics of Engineering Materials, 3ed, pp. 1-45.
(96) A. Ghahremaninezhad, K. Ravi-Chandar, 2011, “ Ductile failure in polycrystalline
OFHC copper”, International Journal of Solids and Structure, Vol. 48.
pp. 3299-3311.
(97) 陳長有、許禎祥、許振聲、陳柏宜,民國99年,機械材料實驗,全華圖書公司,台北。
(98) D. M. Rodrigues, L.F. Menezes, A. Loureiro, 2004, “ The influence of the HAZ softening on the mechanical behaviour of welded joints containing crack in the weld metal”, Engineering Fracture Mechanics, Vol. 71, pp. 2053-2064.
(99) William F. Hosford, 2005, Mechanical Behavior of Materials,
Cambridge University Press, pp. 312.
(100) M.Temmar, M. Hadji, T. Sahraoui, 2011, “Effect of post-weld aging treatment on mechanical properties of Tungsten Inert Gas welded low thickness 7075 aluminium alloy joints”, Materials and Design, Vol.32, pp. 3532-3536.
(101) M.R. Louthan, Jr., G.R. Caskey, Jr., J.A. Donovan, D.E. Rawl, Jr., 1972, “Hydrogen embrittlement of metals”, Materials Science and Engineering, Vol. 10, pp. 357-368.
(102) T. L. Anderson, 2000, Fracture Mechanics: Fundamentals and Application,
CRC Press, pp.472.
(103) T. L. Anderson, 2000, Fracture Mechanics: Fundamentals and Application,
CRC Press, pp. 320.
(104) Charlraie R. Brooks, Ashok Choudhury, 2002, Failure Analysis of Engineering Materials, McGraw-Hill. pp. 92-93.
(105) A. Arora, Z.Zhang, A. De, T. DebRoy, 2009, “Stains and strain rates during friction stir welding”, Scripta Materialia, Vol.61,pp.863-866.
(106) M. Grujicic, T. He, G. Arakere, H.V. Yalavarthy, C,-F Yen, B.A. Cheeseman, 2010, “Fully coupled thermomechanical finite element analysis of material evolution during friction stir welding of AA5083”, Journal of Engineering Manufacture, Vol.224,pp.609-625.
(107) T. Long, A.P. Reynolds, 2006, “Pametric studies of friction stir welding by commercial fluid dynamics simulation”, Science and Technology of welding and joining, Vol. 11, pp.200-208.
(108) P. A. Colegrove, H. R. Shercliff, 2003, “Experimental and numerical analysis of
aluminium alloy 7075-T7351 friction stir welds”, Science and Technology of welding and joining, Vol. 8, pp.360-368.
(109) Xiaomin Deng, Shaowen Xu, 2004, “Two-Dimensional Finite Element Simulation of Materials Flow in the Friction Stir Welding Process”, Journal of Manufacturing Processes, Vol. 6, pp.125-133.
(110) J.Q. Su, T.W. Nelson, R. Mishra, M. Mahoney, 2003, “Microstructural investigation of friction stir welded 7075-T651 aluminium”, Acta materialia,
Vol.46, pp.337-342.
(111) K. Elangovan, V. Balasubramanian, 2008, “ Influences of tool pin profile and welding speed on formation of friction stir processing zone in AA2219 aluminium alloy”, Journal of Materials Processing Technology, Vol.200, pp.163-175.
(112) M. Peel, A. Steuwer, M. Preuss, P.J. Withers, “Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds”, Acta Materialia, Vol.51, pp.4791-4801.
(113) Hanadi G. Salem , Anthony P. Reynolds , Jed S. Lyons, 2002, “Microstructure and retention of superplasticity of friction stir welded superplastic 2095 sheet”, Scripta Materialia, Vol.46, pp.337–342.
(114) H.J. Liu, Y.C. Chen, J.C. Feng, 2006, “Effect of zigzag line on the mechanical properties of friction stir welded joints of an Al–Cu alloy” Scripta Materialia Vol.55, pp.231–234.
(115) Z. Zhang, Y. L. Liu, J.T. Chen, 2009, “Effect of shoulder size on the temperature rise and the material deformation in friction stir welding”, International Journal of Advanced Manufacturing Technology, Vol.45, pp. 889-895.
(116) Lai-Zhe Jin, Rolf Sandstrom, 2011, “Numerical simulation of residual stresses friction stir wlds in copper canisters”, Journal of Manufacturing Processes, Vol.xxx, pp.xxx-xxx. Dol:10.1016/j.jmapro.2011.10.001.(in press).
(117) N. Rajamanickam, V. Balusamy, G. Madhusudhanna Reddy, K. Natarajan, 2009, “Effect of process parameters on thermal history and mechanical properties of friction stir welds”, Materials and Design, Vol.30, pp.2726-2731.
(118) P. Heurtier, M. J. Jones, C. Desrayaud, j. h. Driver, F.Montheillet, D. Allehaux, 2006, “Mechanical and Thermal Modeling of Friction Stir Welding”, Journal of materials Processing Technology,Vol.171,pp.348-357.
(119) Yu-cheng Lei, Wen-xia Yu, Cai-hui Li, Xiao-nong Cheng, 2006, “ Simulation on temperature field of TIG welding of copper without preheating” , Transactions of Nonferrous Metals Society of China, Vol.16,pp.838-842.
(120) C. M. Chen, R. Kovacevic, 2003, “ Finite element modeling of friction stir welding¬----thermal and thermomechanical analysis”, International Journal of Machine Tool & Manufacture, Vol.43,pp.1319-1326.
(121) M. Song, R. Kovacevic, 2003, “ Numercial and experimental study of the heat transfer process in friction stir welding”, Journal of engineering manufacture, Vol.217. pp.73-85.
(122) Z. Zhng, H.W. Zhang, 2009, “Numerical studies on the effect of transverse speed in friction stir welding”, Materials and Design, Vol.30, pp.900-907.
(123) P. Vilaca, I. Quintino, J.F. Santos, 2005, “Istir-Analytical thermal model for friction stir welding”, Journal of materials Processing Technology, Vol.169, pp.452-465.
(124) ABAQUS, 2009,VERSION 6.10 Documentation.
(125) G. Buffa, L. Fratini, S. Pasta, R. Shivpuri, 2008, “On the thermo-mechanical loads and the resultant residual stresses in friction stir processing operations”, CIRP Annals – Manufacturing Technilogy, Vol.57,pp.287-290.
(126) A. Bastier, M.H. Maitournam, F. Roger, K. Dang Van, 2008, “Modelling of the residual state of friction stir welded plates”, Journal of Materials Processing Technology, Vol.200. pp. 25-37.
(127) G. Buffa, A. Ducato, L. Fratini, 2011, “ Numerical procedure for residual stresses prediction in friction stir welding”, Finite Elements in Analysis and Design, Vol.47, pp.470-476.
(128) T. Schenk, I. M. Richardson, M. Kraska, S. Ohnimus, 2009, “ A study on the influence of clamping on welding distortion”, Computational Materials Science, Vol.45, pp.999-1005.
(129) V. Richter-Trummer, E. Suzano, M. Beltrao, A. RJ.F. dos SANTOS,
P.M.S.T. de Castro, 2012, “Influence of the FSW clamping force on the final distortion and residual stress field”, Materials Science and Engineering A, Vol.538, pp81-88.
(130) Livan Fratini, Gandolf Macaluso, Salvatore Pasta, 2009, “Residual stresses and FCP prediction in FSW through a continuous FE model”, Journal of Materials Processing Technology, Vol.209, pp. 5465-5474.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔