跳到主要內容

臺灣博碩士論文加值系統

(44.223.39.67) 您好!臺灣時間:2024/05/26 14:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張晨鋒
研究生(外文):Chen-Fong Jhang
論文名稱:應用異型水路設計改善楔型導光板射出成型品質之研究
論文名稱(外文):Application of Conformal Cooling Design to Improve the Quality of Wedge-shaped Light Guide Plate in Injection Molding
指導教授:黃俊欽黃俊欽引用關係
指導教授(外文):Chung-Ching Huang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:73
中文關鍵詞:異型水路射出成型楔型導光板
外文關鍵詞:Conformal CoolingInjection MoldWedge-shaped LGP
相關次數:
  • 被引用被引用:21
  • 點閱點閱:1433
  • 評分評分:
  • 下載下載:89
  • 收藏至我的研究室書目清單書目收藏:1
射出成型過程中,冷卻時間約占40~90%,為了減少冷卻時間,提高生產效率,需要有更佳的水路設計,目前水路設計大多使用傳統經驗法則來設計,雖能設計出較佳之水路,但對於產品厚度不均之產品,仍有許多缺點。異型水路是一種較新的水路配置方式,它能使水路更貼近模具表面,使形狀較複雜之產品,較能均勻冷卻改善產品之品質,且減少冷卻時間,目前探討異型水路之技術,大多以均勻厚度之3D形狀產品為主,甚少將此概念應用於厚度不均勻之產品,因此本研究將探討異型水路之設計,於厚度不均勻產品之應用。
本研究以厚度0. 54 mm ~ 1. 36 mm之14 吋楔型導光板為例,澆口採用扇形及膜狀方式設計,厚度1.5 mm。使用異型水路排列法則,依據產品厚度變化,調整水路密度與水路到模穴之距離,使水路移除熱量的速率與產品厚度成正比,達到均勻冷卻,縮短週期時間與改善產品品質之目的。以光學級壓克力(PMMA)為材料,結合CAE模流分析軟體,研究內容將比較傳統貫穿孔水路與異型水路之冷卻效率與成型品質的差異性,並進一步探討其對產品翹曲與冷卻時間長短之影響,結果發現異型水路設計可以縮短冷卻時間,改善產品品質,主要是因其水路設計使產品均勻冷卻,較不易產生翹曲變形。
In the injection molding process, the cooling time for cooling stage is about 40 ~ 90% of the cycle time. A good cooling channel of injection molding will reduce the cycle times and upgrade outputs. The current design of cooling channels, designers usually depends on experience or design rules with trial and error method. But especially for non-uniform thickness product, there is no guarantee about the best cooling design. The conformal cooling is a new technology about injection molding cooling system; cooling channels were designed near mold surface and cooled complex shape of the products uniformly. A number of cases had applied conformal cooling to cool the uniform thickness product. But, very little information was available on non-uniform thickness product.
In this study, a 14 inches wedge-shaped light guide plate with non-uniform thickness of 0.54 mm ~ 1.36 mm was considered to design a conformal cooling system. Light guide plates were made of PMMA. In order to get the best cooling efficiency, conformal cooling system was designed by grid layout method and the density of grids were varied with part thickness and distance between channel and cavity. This study explored the influence of conformal cooling system and cycle time. From the CAE result of tradition and conformal design, conformal cooling system provide the shorter cycle time and better product quality.
中文摘要......................................................................i
ABSTRACT.................................................................ii
誌謝............................................................................iv
目錄............................................................................v
表目錄........................................................................vii
圖目錄........................................................................viii
符號說明.....................................................................x
第一章 緒論...............................................................1
1.1前言......................................................................1
1.2導光板簡介...........................................................2
1.3研究動機與目的....................................................9
1.4文獻回顧..............................................................10
1.5論文架構..............................................................17
第二章 基本原理.......................................................19
2.1射出成型(Injection Molding, IM)………..…...…...19
2.2模具冷卻系統.......................................................22
2.3模具冷卻水路型式.............................................. 24
2.4冷卻液的影響.......................................................27
2.5影響產品冷卻速度之因素.....................................29
第三章 研究方法.......................................................31
3.1模具熱交換情形...................................................31
3.2基本假設..............................................................32
3.3冷卻時間計算方法................................................33
3.4冷卻系統間距計算方法.........................................35
3.5范諾法(Voronoi Diagram).....................................36
3.6產品依厚度分級...................................................38
3.7CAE模流分析.......................................................38
3.8水路間距計算流程................................................39
第四章 實驗規劃與分析............................................43
4.1產品、模具與成型參數設定..................................43
4.2成形材料選用.......................................................45
4.3產品依厚度分級...................................................47
4.4間距計算與水路生成............................................48
4.5模流分析..............................................................49
第五章 結果與討論....................................................51
5.1水路形式對冷卻時間之影響..................................51
5.2水路形式對翹曲之影響.........................................54
5.3冷卻液雷諾數下降對冷卻效率之影響...................59
5.4冷卻液雷諾數下降對水路溫度之影響...................61
5.5冷卻液雷諾數下降對熱移除效率之影響...............63
5.6水路形式對模具熱穩定週期之影響......................65
第六章 結論..............................................................67
6.1結論.....................................................................67
6.2未來展望..............................................................68
參考文獻...................................................................69
作者簡介...................................................................73
[1]L. Q. Tang, C. Chassapis and S. Manoochehri, “Optimal cooling system design for multi-cavity injection molding”, Finite Elements in Analysis and Design, Vol. 29, pp.229-251, 1997.
[2]X. Xu, E. Sachs, S. Allen, M. Cima, “Designing conformal cooling channels for tooling”, Solid Freeform Fabrication Proceedings, pp.131-146, 1998.
[3]X. Xu, E. Sachs and S. Allen, “The design of conformal cooling channels in injection molding tooling”, Polymer Engineering and Science, Vol. 41, No. 7, pp. 1265-1279, 2001.
[4]N. Hopkinson and P. Dickens, “Conformal Cooling and Heating Channels Using Laser Sintered Tools”, Solid freeform fabrication conference, Texas, pp. 490-497, 2000.
[5]E. Sachs, E. Wylonis, S. Allen, M. Cima and H. Guo, “Production of Injection Molding Tooling with Conformal Cooling Channels Using the Three Dimensional Printing Process”, Polymer Engineering and Science, Vol. 40, No. 5, pp. 1232-1247, 2000.
[6]C. L. Li, “A feature-based approach to injection mould cooling system design”, Computer Aided Design, Vol. 33, pp. 1073-1090, 2001.
[7]Z. C. Lin and M. H. Chou, “Design of the Cooling Channels in Nonrectangular Plastic Flat Injection Mold”, Journal of Manufacturing Systems, Vol. 21, No. 3, pp. 167-186, 2002.
[8]J. C. Lin, “Optimum cooling system design of a free-form injection mold using an abductive network”, Journal of Materials Processing Technology, Vol. 120, pp. 226-236, 2002.
[9]Y. F. Sun, K. S. Lee and A. Y. Nee, “The application of U-shape milled grooves for cooling of injection moulds”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 216, No. 12, pp. 1561-1573, 2002.
[10]Y. F. Sun, K. S. Lee and A. Y. Nee, “Design and FEM analysis of the milled groove insert method for cooling of plastic injection moulds”, The International Journal of Advanced Manufacturing Technology, Vol. 24, No. 9, pp. 715-726, 2004.
[11]J. C. Ferreira, and A. Mateus, “Studies of rapid soft tooling with conformal cooling channels for plastic injection moulding, ”Journal of Materials Processing Technology”, Vol. 142, No. 2, pp. 508-516, 2003.
[12]D. E. Dimla, M. Camilotto, F. Miani, “Design and optimisation of conformal cooling channels in injection moulding tools”, Journal of Materials Processing Technology, Vol. 164–165, pp. 1294-1300,2005.
[13]H. Qiao, “A systematic computer-aided approach to cooling system optimal design in plastic injection molding”, International Journal of Mechanical Sciences, Vol. 48, No. 4, pp. 430-439, 2006.
[14]K. M. Au and K. M. Yu, “A scaffolding architecture for conformal cooling design in rapid plastic injection moulding” International Journal of Advanced Manufacturing Technology, Vol.34, pp. 496-515, 2007.
[15]A. B. M. Saifullah, S. H. Masood, “Finite element thermal analysis of conformal cooling channels in injection moulding”, 5th Australasian congress on applied mechanics, Brisbane, Australia, 2007.
[16]C. G. Li and C. L. Li, “Plastic injection mould cooling system design by the configuration space method”, Computer Aided Design, Vol. 40, pp. 334-349, 2008.
[17]L. E. Rännar,“On optimization of injection molding cooling”, Ph.D. Thesis, Engineering Design and Materials, Norwegian University of Science and Technology, 2008.
[18]H. S. Park and N. H. Pham, “Design of conformal cooling channels for an automotive part”, International Journal of Automotive Technology, Vol. 10, No. 1, pp. 87-93, 2009.
[19]R. X. Xu, E. Sachs, “Rapid thermal cycling with low thermal inertia tools”, Polymer Engineering and Science, Vol.49, No. 2, pp. 305-316, 2009.
[20]A. B. M. Saifullah, S. H. Masood and I. Sbarski, “New cooling channels design for injection molding”, Proceedings of the Word Congress on Engineering, Vol. I, 2009.
[21]D. G. Ahn, S. H. Park and H. S. Kim, “Manufacture of an injection mould with rapid and uniform cooling characteristics for the fan parts using DMT process”, International Journal of Precisision Engineering Manufacturing, Vol. 11, No. 6, pp. 915-924, 2010.
[22]B. O. Rhee, C. S. Park, H. K. Chang, H. W. Jung and Y. J. Lee, “Automatic Generation of Optimum Cooling Circuit for Large Injection Molded Parts”, International Journal of Precision Engineering and Manufacturing, Vol. 11, No. 3, pp. 439-444, 2010.
[23]H. S. Park and X. P. Dang , “Optimization of conformal cooling channels with array of baffles for plastic injection mold”, International Journal of Precision Engineering and Manufacturing, Vol. 11, No. 6, pp. 879-890, 2010.
[24]Li Ren and WenXiao Zhang,“Optimization design of injection mold cooling system based on particle swarm optimization and genetic algorithms”, Artificial Intelligence Management Science and Electronic Commerce (AIMSEC) 2nd International Conference, pp. 2232-2235, 2011.
[25]Dong-Gyu Ahn, “Applications of laser assisted metal rapid tooling process to manufacture of molding & forming tools — state of the art”, International Journal of Precision Engineering and Manufacturing, Vol. 12, No. 5, pp. 925-938, 2011.
[26]X. P. Dang and H. S. Park, “Design of U-shape milled groove conformal cooling channels for plastic injection mold”, International Journal of Precision Engineering and Manufacturing, Vol. 12, No. 1, pp. 73-84, 2011.
[27]Y. Wang, K. M. Yu, C. C. L. Wang, Y. Zhang, “Automatic design of conformal cooling circuits for rapid tooling”, Computer-Aided Design, Vol. 43, No. 8, pp. 1001-1010, 2011.
[28]K. M. Au, K. M. Yu, W. K. Chiu, “Visibility-based conformal cooling channel generation for rapid tooling”, Computer-Aided Design, Vol. 43, pp. 356-378, 2011.
[29]V. R. Dominick, V. R. Donald, G. R. Marlene, “Injection molding handbook”, Kluwer Academic Publishers, 2000.
[30]J. B. Dym, “Injection molds and molding: a practical manual”, 2nd ed, Springer, 1987.
[31]A. I. Isayev, “Injection and compression molding fundamentals”, Marcel Dekker, 1987.
[32]P. S. Cracknell and R. W. Dyson, “Handbook of thermoplastics injection mould design”, Blackie Academic & Professional, 1993.
[33]R. G. W. Pye, “Injection mould design: a textbook for the novice and a design manual for the thermoplastics industry”, J. Wiley,1989.
[34]G. Menges, “How to make injection moulds”, Hanser Gardner Publications,2001.
[35]J. Shoemaker, “Moldflow design guide: a resource for plastic engineers”, Hanser Gardner Publications, 2006.
[36]G. Wübken, “Injection moulds”, VDI Verlag, 1980.
[37]P. Ballman and R. Shusman, “Easy way to calculate injection molding setup time”, New York, NY: McGraw-Hill, 1959.
[38]H. Capart, D.L. Young, and Y. Zech, “Voronoi imaging methods for the measurement of granular flows”, Exp. Fluids, Vol. 32, pp. 121-135, 2002.
[39]S. Fortune, “A sweepline algorithm for Voronoi diagrams”, Algorithmica, Vol. 2, pp. 153-174, 1987.
[40]R. Sibson, “A brief description of natural neighbour interpolation”, V. Barnett (Ed.), Interpreting Multivariate Data, Wiley, Chichester, pp. 21-36,1981.
[41]S. Lloyd, “Least Square Quantization in PCM”, IEEE Transactions on Information Theory, Vol. 28, pp. 129-137, 1982.
[42]Q Du, M. Emelianenko and L. Ju, “Convergence of the Lloyd algorithm for computing centroidal Voronoi tessellations”, SIAM Journal on Numerical Analysis, vol. 44, No. 1, pp. 102-119, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊