(3.227.0.150) 您好!臺灣時間:2021/05/06 12:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊正安
研究生(外文):CHUANG CHENG AN
論文名稱:三元系鈦鎳鎢形狀記憶合金之研究
論文名稱(外文):A study of TiNiW ternary shape memory alloys
指導教授:謝世峰
指導教授(外文):HSIEH SHIH FENG
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:117
中文關鍵詞:形狀記憶合金冷加工時效處理熱循環
外文關鍵詞:Shape Memory AlloysCold WorkAgingThermal Cycling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:641
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對三元系Ti50Ni49W1、Ti50Ni48W2 (Ti50系列)及Ti49Ni50W1之形狀記憶合金實施熱機處理(時效、熱循環及冷加工),探討其相變化行為、顯微結構、記憶特性及電阻變化。
三元系TiNiW合金經固溶處理後,Ti2(Ni,W)及β-W第二相於晶粒邊界附近析出;且相變化順序皆為一階段B2 B19’相變態。藉由XRD繞射圖中計算出Ti50Ni49W1合金B19’麻田散體相的結晶結構中格子常數較Ti50Ni50合金來得大;此外,TiNiW合金形狀回復能力提高,來自於W之固溶強化效應。
Ti49Ni50W1合金經300℃時效處理,因析出整合型析出物Ti3Ni4與基地整合,使得回復應力(back stress)增加,壓抑麻田散體相變態溫度並衍生R相,而使電阻提高後趨緩,相變態順序為B2RB19’,此外,W原子固溶會抑制時效的成核與成長速率,Ti3Ni4析出過程較TiNi二元合金來得慢。Ti49Ni50W1合金軋延後再進行時效處理,時效析出物較未軋延來得快,主要來自於軋延所導入的差排於時效初期會有助於析出物析出並產生回復,而使電阻值降低。
Ti50Ni49W1及Ti50Ni48W2合金進行熱循環與冷軋延後熱循環時,隨著循環次數的增加,使相變態順序由B2→B19’轉變成B2→R→B19’,硬度較高的合金,對麻田散體相變態的阻力越大,致使麻田散體相變態溫度M*會被壓抑的更低;經冷加工後再施以熱循環後,由於冷軋延所引進的差排與熱循環引進的差排交互作用,會使麻田散體相變態峰逐漸變寬而與R相變態峰重合;熱循環過程中,由於導入差排,合金硬度隨之增加,故可提高形狀回復能力。
In this study, the phase transformation behavior, microstructures, shape memory recovery and electrical resistivity of the thermo-mechanical treatment of the ternary Ti50Ni49W1, Ti50Ni48W2 and Ti49Ni50W1 alloys were investigated. Several second phase particles Ti2(Ni,W) and -W located around grain boundaries are observed. The lattice parameters of B19’martensite of the Ti50Ni49W1 alloy are calculated from the XRD profiles, a=2.901Å、b=4.122Å、c=4.652Å and β=97.58∘and all of them are larger than those of Ti50Ni50 alloy. The transformation sequence of TiNiW ternary alloys has a one-stage B2B19’ transformation. The shape memory effect of these alloys can be improved by the W solid-solution hardening.
The transformation sequence of the Ti49Ni50W1 alloy aged at 300℃ can exhibit the two-stage B2RB19’ transformation. The R-phase transformation can be induced due to the Ms temperature being deeply depressed by the coherent stress of Ti3Ni4 precipitates, and the electrical resistivity initially increases and up to level during the aging process. Compared with nickel-rich TiNi binary alloy, the nucleation and growth rate of Ti3Ni4 precipitates can be retarded on account of the W atoms solid solution in TiNi alloys. However, the nucleation rate of Ti3Ni4 precipitates of the cold-rolled Ti49Ni50W1 alloy is faster in the initial aging stage due to much more nucleate sites formed in dislocations, resulting in the electrical resistivity decrease sharply. Precipitation strengthening can also improve the SME characteristics.
Ti50Ni49W1 and Ti50Ni48W2 alloys specimens with and without cold-rolling are subjected to thermal cycling. The transformation sequence of these alloys can be changed from B2→B19’ to B2→R→B19’ by increasing the thermal cycling number. These results arise from thermal stress introduced dislocations. The hardness increment and transformation temperature depression of Ti50Ni48W2 alloy are more than those of Ti50Ni49W1 alloy under the same thermal number due to the former alloy having a higher inherent hardness from 2 at.% W atoms solid-soluted in TiNi alloy.
摘 要 I
ABSTRACT III
目 錄 VI
表 目 錄 IX
圖 目 錄 X
符號說明 XIII
第一章 緒論 1
第二章 文獻回顧 3
2.1形狀記憶合金簡介 3
2.2熱彈性型麻田散體變態 3
2.3形狀記憶效應介紹 6
2.4擬彈性效應介紹 11
2.5 TiNi系形狀記憶合金 18
2.5.1 相變態行為 18
2.5.2 熱循環效應 23
2.5.3 TiNi合金之時效效應 24
2.5.4 冷加工效應 27
2.5.5 冷加工所致麻田散體安定化現象 27
2.6 析出硬化 30
2.6.1 析出硬化之處理程序 30
2.6.2 析出強化對相變態溫度的關係 30
2.6.3 析出強化對形狀回復率的探討 32
2.7 TiNi添加合金元素對變態點溫度效應 35
第三章 實驗方法 40
3.1 合金之配製 40
3.2 合金之熔煉 40
3.3 冷軋延 43
3.4 熱機處理 45
3.5 DSC量測 46
3.6 電阻量測 47
3.7 TEM顯微組織觀察 47
3.8 形狀記憶效應(SME)測試 49
3.9 XRD分析 50
3.10 硬度量測 51
第四章 結果與討論 52
4.1 合金基本性質 52
4.2 硬度量測 55
4.3 XRD繞射分析 56
4.4 形狀記憶效應 58
第五章 TINIW形狀記憶合金強化效應 60
5.1 TiNiW形狀記憶合金析出硬化 60
5.1.1 Ni-rich TiNiW合金固溶處理 61
5.1.2 時效處理後相變態行為 61
5.1.3 DSC量測 61
5.1.4 電阻量測 62
5.2 Ti49Ni50W1冷軋延 70
5.2.1 經25%冷軋延後300℃時效處理之DSC量測 70
5.2.2 經25%冷軋延後300℃時效處理之電阻量測 70
5.3 TiNiW合金時效處理顯微組織與結構之分析 78
5.4 XRD之晶體結構分析 86
5.5 Ti49Ni50W1合金之硬度量測 88
5.6 Ti49Ni50W1合金之形狀記憶效應 91
5.7 室溫(麻田散體)冷加工後熱循環 93
5.8 固溶處理與冷加工後熱循環之硬度量測 103
5.9 固溶處理後熱循環之形狀記憶效應 107
第六章 結論 108
參考文獻 110
個人簡歷 117
[1]L. C. Chang, T. A. Read, 1950, Trans. AIME. 189, 47.
[2]轟 恆彥,1988,機械の研究,第四十卷,第一號,195.
[3]D. F. Williams, 1981, CRC Press, Biocompatibility of Clinical Implant Materials. 1.
[4] X. J. Yan,H. Gugel, S.Huth, W. Theiseh, 2011, Materials Letters, 65, pp.2934-2936.
[5]C. M. Wayman, 1980, J. Metal., 32, pp.129-137.
[6]K. Otsuka, K. Shimizu, 1986, Int. met. Rev., 31, pp.93-114.
[7]L. Mc. D. Scketky, 1979, Scientific American, 241, 74.
[8]W. J. Buehler, J. W. Gilfrich, R. C. Wiley, 1963, J. Apply. Phys., 34, pp.1475.
[9]L. Delaet, R. V. krishnan, H. Tas, H. Warlimont, 1974, J. Mater. Sci., 9, pp.1521-1535.
[10]P. Jardline, K. H. G. Ashbee, M. J. Bassett, 1988, J. Mater., SCI, 23, pp.4273-4281.
[11]T. Tadaki, K. Otsuka, K. Shimizu, 1988, Ann. Rev. Mater. Sci., 18, pp.25-45.
[12]L. Delaey, R. V. Krishnan, H. Tas, H. Warlimont, 1974, J. Mater. Sci., 9, pp.1521-1535.
[13]J. Ortin, A. Planes, 1988, Acta Metall., 36, pp.1873-1889.
[14]H. C. Tong, C. M. Wayman, 1974, Acta Metall., 22, pp.887-896.
[15]R. J. Salzbrenner, M. Cohen, 1979, Acta Metall., 27, pp.739-748.
[16]L. Kaufman, M. Cohen, 1958, Prog. Met. Phys., 7, pp.165-246.
[17]C. M. Wayman, 1976, Trans., JIM, Supplement, 17, p.159.
[18]D. P. Dunne, C. M. Wayman, 1973, Met., Trans., 4, pp.137-145.
[19]G. B. Olson, M. Cohen, 1975, Scripta Met., 9, pp.1274.
[20]T. Saburi, S. Nenno, C. M. Wayman, 1979, ICOMAT-79, pp.619.
[21]T. Saburi, S. Nenno, 1982, in: Proc. Int. Conf. on Solid to Solid Phase Transformation, ASM, Metals Park, Ohio, pp.1455.
[22]T. A. Schroder, C. M. Wayman, 1977, Scripta Met., 11, pp.225-230.
[23]L. Delaey, J. Thienel, 1975, In: Shape Memory Effect in Alloys, Ed. J. Perkins, Plenum Press, New York, pp.341-349.
[24]M. Nishida, T. Honma, 1982, ICOMAT-82, 43, C4-225.
[25]M. Nishida, T. Honma, 1984, Scripta Met., 18, 138, pp.1293-1299.
[26]T. Honma, 1986, Proc. Guilin. Symp. of Shape Memory Alloys, SMA 86 Guilin, China, 83.
[27]T. Honma, 1986, ICOMAT-86, p.709.
[28]C. M. Wayman, K. Shimizu, 1972, Met. Sci. J., 6, pp.175-183.
[29]H. C. Lu, 1992, Master Thesis, National Taiwan University.
[30]K. Otsuka, K. Shimizu, 1981, Metals Forum, 4, p.142.
[31]K. Otsuka, C. M. Wayman, 1977, In Review on the Deformation Behavior of Materials, (P.Feltham ed), Israel, p.1267.
[32]K. Otsuke, 1981, Proc. Int. Conf. on Solid in Solid Phase Transformation, TMs-AIME, Pittsburgh, Pa (USA), p.1267.
[33]K. Otsuke, C. M. Wayman, K. Nakai, H. Sakamoto, K. Shimizu, 1976, Acta Met., 24, pp.207-226.
[34]J. W. Christian, 1982, Met. Trans., 13, pp.509-538.
[35]S. K. Wu, C. M. Wayman, 1989, Acta Met., 37, pp.2805-2813.
[36] T.W. Puerig, 1990, Materials Science Forum, Vols 56-58, p.679.
[37] Hiroyasu Funakubo, 1987, “Shape Memory Alloys”, Gordon and Breach Science Publishers S.A., p.213.
[38] D. Stoclel, 1987, “Engineering Aspects of Shape Memory Alloys”, Butterworth Heinemann Ltd., p.283.
[39] Y. Suzuki, J. Rob. Mech., 1989, Vol. l, p.240.
[40] R. Sachdeva, S. Fukuto, K. Suzuki, Y. Oshida and S. Miyazaki, 1990, Materials ScienceForum, Vols 56-58, p.693.
[41] S. Lu, 1990, “Engineering Aspects of Shape Memory Alloys”, Butterworth Heinemann Ltd., p.445.
[42]K. Otsuka, X. Ren, 1999, Intermetellics, 7, pp.511-528.
[43]T. B Massalki, H. Okamoto, P. R. Subramanian, L. Kacprzak, 1990, Binary alloy phase diagrams, 2nd ed., Vol. 3.Ohio: ASM International, p.2875.
[44]R. R Hasiguti, K. Iwasaki, 1968, J. Appl. Phys., 39, pp.2182-2186.
[45]Mercier, K. N. Melton, 1979, Acta Met., 27, pp.137-144.
[46]S. Miyazaki, T. Imai, Y. Igo, K. Otsuake, 1986, Met. Trans., 17A, pp.115-120.
[47]C. H. Yang, 2002, Master Thesis, Feng Chia University.
[48]K. Otsuka, T. Sawamura, K. Shimizu, 1971, Phys. Stat. Sol., (a) 5, pp.457-470.
[49]O. Mastsumoto, S. Miyaaki, K. Ostuka, H. Tamura, 1987, Acta Mater., 35, pp.2137-2144.
[50]K. M. Knowls, D. A. Smith, 1981, Acta Mater., 29, pp.101-110.
[51] T. Saburi, and C.M. Wayman, 1980, Acta Met., 28, p.15.
[52]D. P. Dautovich, G. R. Purdy, 1972, Can. Mateall., 6, p.115.
[53]D. Bradley, 1965, J. Acoust, Soc. Am., 37, 700.
[54]C. M. Wayman, I. Cornelis, 1972, Scripta, Metal., 6, pp.115-122.
[55]H. C. Ling, R. Kaplow, 1980, Met. Trans., 11, pp.77-83.
[56]D. P. Dautovich, G. R. Purdy, 1965, Can. Metal. Quart, 4, pp.129-143.
[57]F. E. Wang, B. F. Desavage, W. I. Buehler, 1968, J. Appl. Phys., 39, p.2166.
[58]G. D. Sandrock, A. J. Perkin, R. F. Hechemann, 1971, Met. Trans., 2, p.2769.
[59]O. Mercier and K. N. Melten, 1979, Acta Met., 27, pp.137-144.
[60]K. H. Eckelmeyer, 1976, Scripta Mater., 10, pp.667-672.
[61]E. Goo, R. Siinclair, 1985, Acta Met., 33, p.1717.
[62]C. M. Hwang, M. Meichle, M. B. Salamon, C. M. Wayman, 1983, Phys. Mag., A47, pp.9-30.
[63]J. E. Hanlon, S. R. Butler, R. J. Wasilewski, 1967, AIME. Met. Soc. Trans., 239, pp.1357-1364.
[64]T. Saburi, T. Tastsumi, S. Nenno, 1982, J. De Phys., 43, C4-261.
[65]T. Tadaki, Y. Nakata, K. Shimizu, 1987, Trans. JIM., 28, pp.883-890.
[66]S. Miyazaki, Y. Igo, K. Otsuka, 1986, Acta Met., 34, pp.2045-2051.
[67]M. Nishida, C. M. Wayman, A. Chiba, 1988, Metallography, 21, pp.275-291.
[68]G. Airoldi, G.Bellni, C. D. Franceso, 1984, J. Phys., F 14, p.1983.
[69]H. S. Lin, S. K. Wu, T. S. Chou, H. P. Kuo, 1991, Acta Metall. Mater. , 39, p.2069.
[70] F. E. Wang, B. F. Desavage and W. I. Buehler, 1968, Appl. Phys., Vol.2, p.2166.
[71] C. M. Wayman, I. Cornelis and K. Shimizu, 1972, Scripta, Met., Vol.6, p.115.
[72] S. Miyazaki, Y. Iog and K. Otsuka, 1986, Acta, Met., Col.34, p.2045.
[73] G. Airoldi, B. Rivolta and C. Turco, 1986, ICOMAT-86, p.691.
[74] T. Tadaki, Y. Nakata, K. Shimizu, 1987, Trans. JIM, 28, p.883.
[75] S. Miyazaki, Y. Ohmi, K. Otsuka, and Y. Suzuki, 1982, J. De Phys. (Suppl.), 43, C4-255.
[76] T. Saburi, T. Tatsumi and S. Nenno, 1982, J. De Phys., 43, C4-261.
[77] V. I. Kolomytev, V. A. Lobodyuk and L. G. Khandros, 1981, Phys. Stat. Sol.( a ), p.65.
[78] M. Nishida, and C. M. Wayman, 1984, Scripta Met., 18, 138, p.1389.
[79] M. Nishida, C. M. Wayman, and T. Honma, 1984, Scripta Met., 19, p.983.
[80] M. Nishida, C.M. Wayman, R. Kainuma and T. Honma, 1986, Scripta Metall, 20, p.899.
[81] R. Kainuma, M. Matsumoto and T. Honma, 1986, Proc. ICOMAT, p.717.
[82] T. Honma, 1986, ICOMAT-86, p.709.
[83] M. Nishida, C. M. Wayman and T. Hnma, 1986, Met. Trans., 17A, p.1505.
[84] M. Nishida, C. M. Wayman, 1987, Met. Sci. Eng. 93, p.191.
[85] S. K. Wu, H. C. Lin and T. S. Chou, 1989, Scripta, Met., Mater, 23, p.2043.
[86] S. K. Wu, H. C. Lin, 1991, Scripta Metall, 25, p.1295.
[87] A. I. Lotokov, V. N. Grishkov, V.A. Udovenk and A. V. Kuzentsov, 1982, Phys., Met., 54, p.152.
[88] Y. C. Hu, 1990, Master Thesis, National Taiwan University.
[89] C. M. Hwang, M. Meichle, M. B. Salamon and C. M. Wayman, 1983, Phil, Meg, A47, p.9.
[90] T. Tadaki, Y. NaKata, K. Shimizu and K. Otsuka, 1986, Trans., JIM. 27, p.731.
[91] T. Saburi, S. Nenno and T. Fukada, 1986, J. Less-common Metals. 125, p.157.
[92] P. C. Su, 2003, Ph. D. Thesis, National Taiwan University.
[93] D. N. Abujudom, P. E. Thoma and S. Fariabi, 1989, Trans. JIM, 34, p.429.
[94] T. Todoroki and H. Tamura, 1987, Trans. JIM, 28, p.83.
[95] Y. Liu and P. G. Mccormick, 1989, ISIJ International, 29, p.417.
[96] H. C. Lin, S. K. Wu, T. S. Chou and H. P. Kao, 1991, Acta Met., 39, p.2609.
[97] H. C. Lin, S. K. Wu and J.C. Lin, 1994, Material Chem. Phys., 37, p.184.
[98] H. C. Lin and S. K. Wu, 1993, Met. Trans., 24A, p.294.
[99] H. C. Lin and S. K. Wu, 1990, Scripta Met., 24, p.245.
[100] Y. C. Lo, 1992, Ph. D. Thesis, National Taiwan University.
[101] B. C. Jeng, 1994, Master Thesis, National Taiwan University.
[102] S. H. Chen, 1993, Master Thesis, National Taiwan University.
[103] A. L. Titchener and M. B. Bever, 1958, “Progress in Metal Physics”, Pergamon Press, New York, p.247.
[104] H. C. Lin, 1992, Ph. D. Thesis, National Taiwan University.
[105] E. Hornbogen, 1985, Acta Met., 33, p.595.
[106] C. M. Wayman and H. C. Tong, 1977, Scripta Met., 11, p.345.
[107] L. Katgerman, 1983, J. Mat. Sci. Lett., 2, p.444.
[108] F. E. Wang, 1965, Proc. Of the first Conf. on Fracture, Sendai, Japan, p.899.
[109] K. H. Eckelmeyer, 1976, Scripta Met., 10, p.667.
[110] T. Honma, M. Matsumoto, Y. Shugo and I. Yamazaki, 1980, Proc. 4th Int. Conf. On Titanium, Kyoto, Japan, p.1455.
[111] S. G. Fedotov, N. N. Bashanova, N. F. Zhebyneva, 1981, Russian Metallurgy, 4, p131.
[112] S. G. Fedotov, N. N. Bashanova, N. F. Zhebyneva, 1983, Russian Metallurgy, 4, p.131.
[113] C. M. Hwang, M. Meichle and C. M. Wayman, 1983, Phil. Mag., 47, 90, p.177.
[114] P. M. Ossi and F. Rossitto, 1982, Phys., Vol.43, p.C40127.
[115] P. M. Ossi, 1986, Material Science and Engineering, Vol.77, L5.
[116] V. N. Khachin, N.M. Matveea, V. P. Sivokha, 1981, DAN SSSR Vol.251, p.167.
[117] N. M. Matveea, Yu. K. Kovneristyi, A. S. Savionov and V. N. Khachin, 1982, J. de Phys.C4 , p.249.
[118] V. P. Sivokha, A. S. Savionov and V. N. Khachin, 1983, Phys. Met. Metall., Vol.56, p.112.
[119] S. K. Wu and C. M. Wayman, 1987, Metallography, Vol.20, p.359.
[120] S. K. Wu and C. M. Wayman, 1987, Scripta Met., Vol.21, p.83.
[121] S. K. Wu and C. M. Wayman, 1987, Material Science and Engineerihg, Vol.96, p.295.
[122] P. Viiiars, A. Prince and H. Okamoto, COLIN J. Smithells, 1995, Editor, Handbook of Ternary alloy phase diagrams, 5th ed., Vol.4, p.13061.
[123] S. F. Hsieh, S. K. Wu, H. C. Lin, C. H. Yang, 2005, Journal of Alloys And Compounds,387, pp.121-127.
[124] J. P. Schaffer, A. Saxena, S. D. Antolovich, T. H. Sanders Jr., S. B. Warner, 1999, The Science and Design of Engineering Materials, second ed., McGraw-Hill, New York.
[125] Jafar Khalil-Allafi, Antonin Dlouhy and Gunther Eggeler, 2002, Acta Metall, 50, p.4225.
[126] Pio John S. Buenconsejo, Robert Zarnetta and Alfred Ludwig, 2011, Germany, Scripta Met., 64, pp.1047-1050.
[127] S. K. Wu, H. C. Lin, 1992, Scripta Met., Metall, 26, p.59.
[128] S. F. Hsieh 1997, Ph. D. Thesis, National Taiwan University.
[129] S. K. Sharma, M. P. Macht and V. Naundorf, 1993, J. of Noncrystalline Solids, 437, pp.156-158.
[130] R. W. Cahn and P. Hassen, 1983, “Physical Metallurhy”, (Elservier Science Publisher B. V.).
[131] Genlian Fan, Wei Chen, Sen Yang, Jimhua, Zhu, Xiaobing Ren, Kazuhiro, 2004, Acta Mat., 52, pp.4351-4362.
[132] T. Hara, T. Ohba and K. Otsuka; J. de Physiqueiv 1995 C8-641.
[133] S. Eucken, E. Hornbogen, 1984, J. Mater, SCI, 19, p.1343.
[134] M. Cohen, E. S. Machlin and V. G. Paranjpe, 1950, “Thermodynamics in Physical Metallurgy”, ASM, Metals Park. Ohio, p.242.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔