(3.236.222.124) 您好!臺灣時間:2021/05/13 01:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:李泓緯
研究生(外文):Hong-Wei Lee
論文名稱:應用不同製程於Fresnel鏡片之光學與成形分析
論文名稱(外文):Molding Analysis and Optical Inspection for Fresnel Lens with Different Processes
指導教授:吳政憲吳政憲引用關係
指導教授(外文):Cheng-Hsien Wu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:152
中文關鍵詞:太陽能發電系統、砷化鎵電池、Fresnel鏡片、轉寫性
外文關鍵詞:Photovoltaic system、GaAs cell、Fresnel lens、replicability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:376
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
本研究將探討不同材料的Fresnel鏡片對太陽能電池轉換效率的影響,並利用射出成形、射出壓縮成形、熱壓成形以及滾壓式紫外光固化奈米轉印製作Fresnel鏡片,比較不同製程的轉寫性。本實驗主要分為兩大部份,第一部份為Fresnel鏡片的製作,分別以射出成形與射出壓縮成形、熱壓成形以及滾壓式紫外光固化奈米轉印等製程來製作Fresnel鏡片;第二部份為鏡片輪廓量測與電池轉換效率量測,以表面輪廓儀來量測不同製程製作出的Fresnel鏡片,探討製程的轉寫性,最後則利用太陽光模擬器所產生的光源,透過Fresnel鏡片將光線聚集至太陽能電池上,以提升電池的轉換效率,並探討不同材料鏡片與鏡片轉寫性對電池轉換效率的影響。
實驗結果發現,透過射出成形、射出壓縮成形與熱壓成形所製作的Fresnel鏡片皆可達到98%以上的鏡片轉寫性,且鏡片的轉寫性增加時,太陽能電池的轉換效率也會略為提升。而在進行滾壓成形時,由於鏡片的外形不利於氣泡棑出與脫模,導致成品表面出現氣泡且成形效果不佳,故此製程不適用於圓形Fresnel鏡片。從太陽能電池轉換效率的量測結果發現,當鏡片與電池的距離在100mm之前,電池的轉換效率隨著鏡片與電池距離的增加而提升,但鏡片與電池的距離超過100mm之後,電池的轉換效率隨著鏡片與電池距離的增加而下降,與光學模擬的趨勢相同,而搭配PMMA、PC、COC的鏡片分別使電池的轉換效率提升4.62%、3.52%、4.86%,顯示鏡片材料對太陽能電池的轉換效率並無產生太大的影響。
This study will explores the solar cell conversion efficiency of the Fresnel lenses of different materials. Besides, this thesis also discusses the process of replication of injection molding, injection compression molding, hot embossing and R2R UV-NIL production Fresnel lens. The experiment is divided into two major parts: the first part is the Fresnel lens production, using injection molding and injection compression molding, hot embossing and R2R UV-NIL process of making Fresnel lenses.
The second part is the lens contour measurement and cell efficiency measurement: using the Fresnel lens surface profiler to measure the different production processes, investigating the replication of processes and using the light generated by the solar simulator, through the Fresnel lens to gather light to solar cells so as to enhance the conversion efficiency of the cell, and discussing the effect with different lens materials and lens replication on the cell conversion efficiency.
The experiment result showed that the Fresnel lens produced by the injection molding, injection compression forming and hot embossing can reach more than 98% of the lens replicability. Besides, the conversion efficiency of solar cells increases slightly as well when the replicability of the lens increases, During the R2R UV-NIL processing, bobbles appear on the lens’ surface and the forming result is not good as expected due to the shape of the lens. Therefore, this process is not suitable for the circular Fresnel lens. When the distance between the lens and the cell is within 100 mm, the cell conversion efficiency increases with the increase of the distance of the lens and the cell. However, if the distance between the lens and the battery is more than 100 mm, the conversion efficiency of the cell decreases with the increase of the distance of the lens and the cell, which is the same trend with the optical simulation. With PMMA, PC, COC lens, cell conversion efficiency increases 4.62%, 3.52% and 4.86%, showing that the lens material does not have obvious impacts on the solar cells the conversion efficiency.
摘 要 i
ABSTRACT ii
誌謝 iii
目錄 iv
第一章 緒論 1
1.1 前言 1
1.2 太陽能發電系統 1
1.3 Fresnel鏡片簡介 2
1.4 光學塑膠材料 3
1.5 研究動機與目的 3
1.6 論文架構 4
第二章 塑膠加工原理與文獻回顧 12
2.1 射出成形 12
2.1.1射出成形文獻 13
2.2 射出壓縮成形 14
2.2.1射出壓縮成形文獻 15
2.3 熱壓成形 16
2.3.1 CO2氣體輔助熱壓成形 18
2.3.2熱壓成形文獻 19
2.4 滾壓式紫外光固化奈米轉印 20
2.4.1滾壓式紫外光固化奈米轉印文獻 21
第三章 研究方法與步驟 38
3.1 光學模擬 38
3.1.1 TracePro軟體簡介 38
3.2 Fresnel鏡片光學模擬流程 39
3.3 Fresnel鏡片光學模擬結果 40
3.4 田口方法簡介 40
3.5射出成形與射出壓縮成形實驗 43
3.5.1實驗材料 44
3.5.2實驗設備 44
3.5.3實驗參數設計 44
3.6 熱壓成形實驗 44
3.6.1實驗材料 45
3.6.2實驗設備 45
3.6.3實驗參數設計 45
3.7 滾壓式紫外光固化奈米轉印實驗 46
3.7.1實驗材料 46
3.7.2實驗設備 46
3.7.3實驗參數設計 46
3.8 Fresnel鏡片輪廓量測 47
3.8.1量測設備 47
3.9 太陽能電池轉換效率量測 48
3.9.1量測設備 48
第四章 結果與討論 73
4.1 射出成形實驗結果討論 73
4.2 射出壓縮成形實驗結果討論 74
4.3 熱壓成形實驗結果討論 75
4.4 滾壓式紫外光固化奈米轉印實驗結果討論 76
4.5 各種製程之比較 77
4.6 太陽能電池轉換效率量測結果討論 78
第五章 結論與未來展望 125
5.1 結論 125
5.2 未來展望與建議 126
參考文獻 127
[1]Daniel Chemisana, Joan Ignasi Rosell,”Design and optical performance of a nonimaging Fresnel transmissive concentrator for building integration applications”, Energy Conversion and Management, Volume 52, Issue 10, September 2011, Pages 3241-3248.
[2]Yukinori Kuwano, “Progress of photovoltaic system for house and buildings in Japan”, Renewable Energy, Volume 15, Issues 1-4, September-December 1998, Pages 535-540.
[3]Cheng-Tsong Kuo,”The project of demonstrating MW high concentration photovoltaic(HCPV) system ”, Science and Technology yearbook of Taiwan, ROC, 2008 .
[4]Kwangsun Ryu, Jin-Geun Rhee, Kang-Min Park, Jeong Kim,”Concept and design of modular Fresnel lenses for concentration solar PV system”, Solar Energy, Volume 80, Issue 12, December 2006, Pages 1580-1587.
[5]C. T. Kuo, H. Y. Shin, H. F. Hong, C. H. Wu, C. D. Lee, I. T. Lung, Y. T. Hsu, “Development of the high concentration III-V photovoltaic system at INER, Taiwan” , Renewable Energy, Volume 34, Issue 8, pp.1931-1933, 2009.
[6]David C. Miller, Sarah R. Kurtz , ”Durability of Fresnel lenses : A review specific to the concentrating photovoltaic application”, Solar Energy Materials and Solar Cells, Vol. 95, Issue 8, pp.2037-2068, 2011.
[7]”HIGH QUALITY FRESNEL LENSES IN A VARIETY OF SIZES & FOCAL LENGTHS” , Fresnel Technologies Inc, 2003.
[8]http://www.lighthousetrek.com/loma.html
[9]Luo Lin, Fan Ming,“A novel method of high resolution imaging through random perturbation wave front”, Optics Communications, Volume 281, Issue 5, 1 March 2008, Pages 991-997.
[10]Cristina Sierra, Alfonso J. Vázquez,“High solar energy concentration with a Fresnel lens”, Journal of Materials Science , Volume 40, Number 6, pp. 1339-1343, 2005.
[11]M. J. O'Neill, M. F. Piszczor, M. I. Eskenazi, A.J. McDanala, P. J. George, M. M. Botkec, H. W. Brandhorst, D. L. Edwards, D.T. Hoppe,”Ultra-light stretched Fresnel lens solar concentrator for space power applications”, International Symposium on Optical Science and Technology, SPIE’s 48th Annual Meeting, Vol. 5179, 2003, pp. 116-126.
[12]Michael F. Piszczor, Mark J. O'Neill,”Development of an advanced photovoltaic concentrator system for space applications”, in Proceedings of the 22nd Inters society Energy Conversion Engineering Conference , Pennsyvania , Philadelphia , 1987.
[13]http://www.polyplastics.com/en/product/lines/topas/index.html
[14]尤如瑾,世界太陽光電產業與展望,機械工業第26期,pp156-166。
[15]Ghassan Zubi, José L. Bernal-Agustín, Gian Vincenzo Fracastoro,” High concentration photovoltaic systems applying III–V cells”, Renewable and Sustainable Energy Reviews, Volume 13, Issue 9, December 2009, Pages 2645-2652.
[16]工業研究院IEK-ITIS計畫,2004年7月。
[17]Antonio Martí, Gerardo L. Araújo,”Limiting efficiencies for photovoltaic energy conversion in multigap systems”, Solar Energy Materials and Solar Cells, Volume 43, Issue 2, 1 September 1996, Pages 203-222.
[18]Fraunhofer ISE, Word record:41.1% efficiency reached for multi-junction solar cell at Fraunhofer ISE, Press release, January 2009.
[19]http://www.arburg.com/
[20]http://www.designengineerlife.com/2010/intro-injection-molding/
[21]Kobayashi Makiko, Ono Yuu, Cheng-Kuei Jen, Chin-Chi Cheng,” High-Temperature Piezoelectric Film Ultrasonic Transducers by a Sol-Gel Spray Technique and Their Application to Process Monitoring of Polymer Injection Molding”, IEEE Sensors Journal, Vol. 6, No. 1, February 2006.
[22]黃俊欽、許丕明,塑膠射出成型加工技術自動化實物應用行政院勞工委員會職業訓練局,1998年12月。
[23]Lucia Zema, Giulia Loreti, Alice Melocchi, Alessandra Maroni, Andrea Gazzaniga,”Injection Molding and its application to drug delivery”, Journal of Controlled Release, In Press, Corrected Proof, Available online 9 January 2012.
[24]Kuo-Ming Tsai ,Chung-Yu Hsieh ,Wei-Chun Lo ,”A study of the effects of process parameters for injection molding on surface quality of optical lenses ”, Journal of Materials Processing Technology, Volume 209, Issue 7, 1 April 2009, Pages 3469-3477.
[25]彭聖維,球面鏡片設計成型與品質量測之研究,中原大學機械工程學系碩士論文,1998。
[26]A. Demirer, Y.Soydan , A.O. Kapti ,”An experimental investigation of the effects of hot runner system on injection moulding process in comparison with conventional runner system”, Materials & Design, Volume 28, Issue 5, 2007, Pages 1467-1476.
[27]Xuehong Lu, Lau Soo Khim,”A statistical experimental study of the injection molding of optical lenses”, Journal of Materials Processing Technology, Volume 113, Issues 1–3, 15 June 2001, Pages 189-195.
[28]Hasan Oktem, Tuncay Erzurumlu, Ibrahim Uzman,”Application of Taguchi optimization technique in determining plastic injection molding process parameters for a thin-shell part”, Materials & Design, Volume 28, Issue 4, 2007, Pages 1271-1278.
[29]S.H Tang, Y.J Tan, S.M Sapuan, S. Sulaiman, N.Ismail, R.Samin,”The use of Taguchi method in the design of plastic injection mould for reducing warpage”, Journal of Materials Processing Technology, Volume 182, Issues 1–3, 2 February 2007, Pages 418-426.
[30]Mustafa Kurt, O. Saban Kamber, Yusuf Kaynak, Gurcan Atakok, Oguz Girit,”Experimental investigation of plastic injection molding: Assessment of the effects of cavity pressure and mold temperature on the quality of the final products”, Materials & Design, Volume 30, Issue 8, September 2009, Pages 3217-3224.
[31]Chris Diduch, Rickey Dubay, Wan Gui Li,”Temperature control of injection molding. Part I: Modeling and identification”, Polymer Engineering & Science, Volume 44, Issue 12, December 2004, Pages 2308-2317.
[32]C. Liu, L.T. Manzione,”Process studies in precision injection molding. I: Process parameters and precision”, Polymer Engineering & Science, Volume 36, Issue 1, January 1996, Pages 1-9.
[33]J.G. Kovács, B. Sikló,”Investigation of cooling effect at corners in injection molding”, International Communications in Heat and Mass Transfer, Volume 38, Issue 10, December 2011, Pages 1330-1334.
[34]Yeong-Eun YOO, Tae-Hoon KIM, Tae-Jin JE, Doo-Sun CHOI, Chang-Wan KIM, Sun-Kyung KIM,”Injection molding of micro patterned PMMA plate”, Transactions of Nonferrous Metals Society of China, Volume 21, Supplement 1, March 2011, Pages s148-s152.
[35]Chun-Sheng Chen, Tsyr-Jang Chen, Rean-Der Chien, Shia-Chung Chen,”Investigation on the weldline strength of thin-wall injection molding ABS parts”, International Communications in Heat and Mass Transfer, Volume 34, Issue 4, April 2007, Pages 448-455.
[36]S.C. Chen, Y.C. Chen, N.T. Cheng, Ming-Shyan Huang,”Simulation of injection-compression mold-filling process”, International Communications in Heat and Mass Transfer, Volume 25, Issue 7, October 1998, Pages 907-917.
[37]簡惠民,不等行程射出壓縮應用於精密楔形板件及表面微結構成型性討論,國立臺灣大學機械工程研究所碩士論文,2002。
[38]粘世智,射出壓縮於精密成型的應用與探討,國立臺灣大學機械工程研究所碩士論文,1995。
[39]S.Y. Yang, M.Y. Hon,“Analysis of Post-Filling During Injection Compression Molding” , International Polymer Processing , sub , 2000.
[40]S.Y. Yang, M.Z. Ke,”Influence of processing on quality of injection-compression-molded disks”, Polymer Engineering & Science, Volume 35, Issue 15, August 1995, Pages 1206-1212.
[41]柯茗種,射出壓縮成型過程的基本探討,國立臺灣大學機械工程研究所碩士論文,1992。
[42]吳宗祐,射出壓縮成型在精密圓筒件與表面微肋件之應用探討,國立臺灣大學機械工程學研究所碩士論文,2000。
[43]Wen-Bin Young,”Effect of process parameters on injection compression molding of pickup len”, Applied Mathematical Modelling, Volume 29, Issue 10, October 2005, Pages 955-971.
[44]Cheng-Hsien Wu, Wei-Shiu Chen,” Injection molding and injection compression molding of three-beam grating of DVD pickup lens”, Sensors and Actuators A: Physical, Volume 125, Issue 2, 10 January 2006, Pages 367-375.
[45]W. Michaeli, S. Heßner, F. Klaiber, J. Forster,”Geometrical Accuracy and Optical Performance of Injection Moulded and Injection-compression Moulded Plastic Parts”, CIRP Annals - Manufacturing Technology, Volume 56, Issue 1, 2007, Pages 545-548.
[46]R. Bartolini, W. Hannan, D. Karlsons, M. Lurie,“Embossed Hologram Motion Pictures for Television Playback", Applied Optics, Vol. 9, No. 10, Oct. 1970, pp. 2283-2290.
[47]Matthias Worgull,”Chapter5 - Hot Embossing Process”, Hot Embossing, 2009, Pages 137-177.
[48]C.R Lin, R.H Chen, C. Hung,”Preventing non-uniform shrinkage in open-die hot embossing of PMMA microstructures”, Journal of Materials Processing Technology, Volume 140, Issues 1-3, September 2003, Pages 173-178.
[49]A.E. Guber, M. Heckele, D. Herrmann, A. Muslija, V. Saile, L. Eichhorn, T. Gietzelt, W. Hoffmann, P.C. Hauser, J. Tanyanyiwa, A. Gerlach, N. Gottschlich,G. Knebel,”Microfluidic lab-on-a-chip systems based on polymers: fabrication and application”, Chemical Engineering Journal, Volume 101, Issue 1-3, 2004, Pages 447-453.
[50]A. Gerlach, G. Knebel, A.E. Guber, M. Heckele, D. Herrmann, A. Muslija, Th. Schaller,“Microfabrication of single-use plastic microfluidic devices for high-throughput screening and DNA analysis”, Microsystem Technologies, Volume 7, Issue 5-6, 2002, Pages 265–268.
[51]K. Deguchi, N. Takeuchi, A. Shimizu,”Evaluation of press-uniformity using a pressure sensitive film and calculation of wafer distortions caused by mold press in imprint lithography”, Japanese Journal of Applied Physics , vol. 41, no. Part 1 , pp. 4178-4181, 2002.
[52]C.R Lin, R.H Chen, C. Hung,”The characterization and finite-element analysis of a polymer under hot pressing”, International Journal of Advanced Manufacturing Technology, Vol. 20, pp.230-235, 2002.
[53]S.Y Yang, F.S Cheng, T.C. Hung, J.K Chiu and John G. Loeser,”CO2 Assisted Embossing Process for Replication at Lower-Than-Tg”, 51th EIPBN , Denver , Colorado , 2007.
[54]邱俊凱,CO2氣體輔助微熱壓製程開發研究,國立臺灣大學機械工程研究所碩士論文,2007。
[55]Jin-Tang Wu ,Ying-Ta Chu ,Sen-Yeu Yang , Chen-Chung Li,”Low-temperature embossing technique for fabrication of large-area polymeric microlens array with supercritical carbon dioxide”, Microelectronic Engineering, Volume 87, Issue 12, December 2010, Pages 2620-2624.
[56]Sen-Yeu Yang ,Jing-Tang Wu ,Ying-Ta Chu ,Yi-Hao Hung ,”CO2 Gas-Assisted Micro Hot Embossing Process for Large-Area Replication of Microstructures”, 51th EIPBN , Denver , Colorado , 2007.
[57]Holger Becker, Ulf Heim,”Hot embossing as a method for the fabrication of polymer high aspect ratio structures”, Sensors and Actuators A: Physical, Volume 83, Issues 1–3, 22 May 2000, Pages 130-135.
[58]Frank Gottschalch, Thomas Hoffmann, Clivia M. Sotomayor Torres, Hubert Schulz, Hella-Christin Scheer,”Polymer Issues in Nanoimprinting Technique”, Solid-State Electronics, Volume 43, Issue 6, June 1999, Pages 1079-1083.
[59]王培良,塑膠微熱壓成形特性之研究,國立交通大學機械工程研究所碩士論文,1997。
[60]羅金德,超音波加熱壓印微結構之研究,國立臺灣大學機械工程研究所碩士論文,2002。
[61]Luo Yi, Wang Xiaodong, Yang Fan,”Microfluidic chip made of COP(cyclo-olefin polymer) and comparion to PMMA (polymethylmethacrylate) microfluidic chip”, Journal of Materials Processing Technology, Volume 208, Issues 1–3, 21 November 2008, Pages 63-69.
[62]X.-J. Shen, Li-Wei Pan, Liwei Lin,”Microplastic embossing process: experimental and theoretical characterizations”, Sensors and Actuators A: Physical, Volumes 97–98, 1 April 2002, Pages 428-433.
[63]N.S. Ong, Y.H. Koh, Y.Q. Fu,”Microlens array produced using hot embossing process” Microelectronic Engineering, Volume 60, Issues 3–4, April 2002, Pages 365-379.
[64]賴文童,微結構熱壓成形缺陷之探討,國立交通大學機械工程研究所碩士論文,2000。
[65]M. Heckele, W. Bacher, K. D. Müller,”Hot embossing - The molding technique for plastic microstructures”, Microsystem Technologies, Volume 4, Issue 3, 25 May 1998, Pages 122-124.
[66]J.M Li, C. Liu, J. Peng,”Effect of hot embossing process parameters on polymer flow and microchannel accuracy produced without vacuum”, Journal of Materials Processing Technology, Volume 207, Issues 1–3, 16 October 2008, Pages 163-171.
[67]C.-Y. Chang, S.-Y. Yang, L.-S. Huang, J.-H. Chang,”Fabrication of plastic microlens array using gas-assisted micro-hot embossing with a silicon mold” Infrared Physics & Technology, Volume 48, Issue 2, June 2006, Pages 163-173.
[68]Stephen Y. Chou, Peter R. Krauss, Preston J. Renstrom,”Imprint of sub‐25 nm vias and trenches in polymers”, Applied Physics Letters, Volume 67, Issue 21, 20 November 1995,Pages 3114-3116.
[69]H. Tan, A. Gilbertson, S.Y. Chou,"Roller nanoimprint lithography", Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, Volume 16, Issue 6, 28 September 1998, Pages 3926-3928.
[70]Myeon-Cheon Choi, Youngkyoo Kim, Chang-Sik Ha,”Polymers for flexible displays: From material selection to device applications”, Progress in Polymer Science, Volume 33, Issue 6, June 2008, Pages 581-630.
[71]Aleksander Bessonov, Jung-Woo Seo, Jeong-Gil Kim, Eun-Soo Hwang, Jong-Woo Lee, Jong-Woo Cho, Dae-Jung Kim, Sukwon Lee,”Control over pattern fidelity and surface wettability of imprinted templates for flexible color filter manufacturing”, Microelectronic Engineering, Volume 88, Issue 9, September 2011, Pages 2913-2918.
[72]P. Maury, D. Turkenburg, N. Stroeks, P. Giesen, I. Barbu, E. Meinders, A. van Bremen, N. Iosad, R. van der Werf, H. Onvlee,”Roll-toRoll UV imprint lithography for flexible electronics”, Microelectronic Engineering, Volume 88, Issue 8, August 2011, Pages 2052-2055.
[73]謝正倫,滾輪微結構壓印製程開發研究,國立臺灣大學機械工程研究所碩士論文,2005。
[74]Aleksander Bessonov, Jung-Woo Seo, Jeong-Gil Kim, Eun-Soo Hwang, Jong-Woo Lee, Jong-Woo Cho, Dae-Jung Kim, Sukwon Lee,”Control over pattern fidelity and surface wettability of imprinted templates for flexible color filter manufacturing”, Microelectronic Engineering, Volume 88, Issue 9, September 2011, Pages 2913-2918.
[75]Sen-Yeu Yang, Fang-Sung Cheng, Shu-Wen Xu, Po-Hsun Huang, Tzu-Chien Huang,”Fabrication of microlens arrays using UV micro-stamping with soft roller and gas-pressurized platform”, Microelectronic Engineering, Volume 85, Issue 3, March 2008, Pages 603-609.
[76]吳偉銓,應用奈米滾壓技術於可撓性基板製作大面積奈米結構之研究,國立清華大學動力機械工程學系碩士論文,2010。
[77]X.C Shan, Voytekunas V. Yu, M. Mohaime, Z.W. Zhong, S.J. Wong, S.K. Lau, W.J. Lin, C.W. Lu,” Process study on roll-to-roll ultraviolet (UV) embossing”, in 12th Electronics Packaging Technology Conference (EPTC 2010), 8-10 December 2010, Pages 231-235, Singapore.
[78]Se Hyun Ahn, Jin-Sung Kim,L. Jay Cuo,” Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate”, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, Volume 25, Issue 6, 10 December 2007, Pages 2388-2391.
[79]Soo Yeon Park, KeeBong Choi, GeeHong Kim, JaeJong lee,”Nanopatterning and the flexible stamp replication using thermal and roll typed UV-NIL”, in 3th IEEE International Conference on Nano/Micro Engineered and Molecular Systems,6-9 January 2008, Pages 280-283, China.
[80]M. Chan-Park and W. K. Neo,”Ultraviolet embossing for patterning high aspect ratio polymeric microstructures”, Microsystem Technologies, Volume 9, Number6-7, 2003,Pages 501-506.
[81]R.C. Liang,Scott Tseng,“Microcup LCD, A New Type of Dispersed LCD by a Roll-to-Roll Manufacturing Process”, IDMC '03, Taipei, Liang, Paper We-02-04.
[82]詹弘專,太陽能集光系統之Fresnel透鏡光學設計與成形分析,國立高雄應用科技大學模具工程系碩士論文,2010。
[83]葉乃嘉,曲面式Fresnel 透鏡太陽能集光器之幾何光學模式,明道學術論壇,3卷1期,pp33-49,2007。
[84]張佳萍,具創新型微結構導光膜之光學設計與製程分析,國立高雄應用科技大學模具工程系碩士論文,2010。
[85]蘇莉琪,具雙面微結構設計之導光板光學性質之研究,中原大學機械工程研究所碩士論文,2006。
[86]陳俊生、尹文、陳夏宗、簡仁德、秦進傳,COC 射出成型試片機械與光學性質的探討,第四屆精密機械製造技術研討會,台北,2004。
[87]Yi-Hao Huang, Jing-Tang Wu, Sen-Yeu Yang,”Direct fabricating patterns using stamping transfer process with PDMS mold of hydrophobic nanostructures on surface of micro-cavity”, Microelectronic Engineering, Volume 88, Issue 6, June 2011, Pages 849-854.
[88]黃恩哲,具最大功率追蹤與充電管理之太陽能充電器之研製,國立成功大學工程科學系碩士論文,2008。
[89]陳威廷,運用UV滾壓成形製作太陽能集光薄膜之研究,國立高雄應用科技大學模具工程系碩士論文,2010。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔