(3.235.245.219) 您好!臺灣時間:2021/05/07 22:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:邱彬凱
研究生(外文):Bin-Kai Chiou
論文名稱:應用微透鏡陣列於ETFE膜提升太陽電池發電效益之研究
論文名稱(外文):A Study of Micro-lens Array on ETFE Film for Enhanced Photovoltaic Performance
指導教授:艾和昌艾和昌引用關係
指導教授(外文):Herchang Ay
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:96
中文關鍵詞:太陽電池模組類LIGA製程微透鏡陣列電鑄ETFE
外文關鍵詞:PV moduleLIGA like ProcessElectroformingMicro-lens array (MLA)ETFE
相關次數:
  • 被引用被引用:0
  • 點閱點閱:557
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
鑑於地球能量日漸枯竭,太陽電池模組大量導入民生供電用途,然而目前矽晶太陽電池模組的轉換效率約14% ~ 16%,為降低太陽電池模組與系統的製造成本及應用推廣,轉換效率的提升乃當務之急。目前對於提升太陽電池模組效率方面的研究方法眾多,其中利用透鏡的聚光特性,將太陽光集中至太陽電池模組,藉以提升其轉換效率,有顯著效益。
本研究以光學軟體輔助設計微透鏡及類LIGA(LIGA like)製程製作微透鏡模仁,進而以太陽電池模組封裝轉印與功率量測,藉由微透鏡陣列(Micro-lens Array, MLA)的填充率、微透鏡直徑及對正角等參數,探討太陽電池模組之發電功率。光學模擬軟體針對焦距400μm ~ 440μm,直徑100μm、150μm及200μm與填充率40%、50%及60%的微透鏡,計算太陽電池模組於不同對正角0°~75°的發電功率,以類LIGA製程製作微透鏡陣列模仁,並透過電鑄成功地獲得高填充率的微透鏡陣列鎳模仁。層壓封裝時鎳模仁置於太陽電池模組表面,也就是製程行時表材杜邦ETFE膜下,經熱壓轉印獲得具微透鏡陣列表面之太陽電池模組,最後使用太陽電池檢測機量測其發電功率。
模擬結果顯示:當太陽電池於對正角0°,其微透鏡焦距420μm,增加效益最高達6.22%。當微透鏡直徑分別為100μm、150μm及200μm,間距為25μm、50μm及75μm,且間距相等時,因填充率隨直徑增加而增加,故微透鏡直徑為200μm,間距為25μm,於對正角0°時,最高增加效益1.6%;當微透鏡直徑分別為100μm、150μm及200μm,填充率為40%、50%及60%,填充率相等時,微透鏡直徑為100μm,填充率為60%,於對正角0°時,最高增加效益1.31%,主要原因是微透鏡高度小,與光線之接觸角亦小,增加抗反射能力,可降低直接反射。
實驗結果顯示,本研究發展的MLA杜邦ETFE,其入射太陽光之對正角由0° ~ 60°時,微透鏡能利用光線聚焦的原理,將光線以小入射角度的方式折射至下方太陽電池,增加光線入射在太陽電池上的輻射照度,另可間接降低太陽光的直接反射,減小光入射至太陽電池的角度,增加其二次折射的機會。微透鏡直徑200μm,中心距250μm時,填充率58%,優於微透鏡直徑150μm,中心距200μm,填充率51%,其填充率多出7%,顯示當微透鏡在相同的面積下,微透鏡的陣列填充率越高,能提供更佳的功率。比較模擬與實驗結果,就微透鏡直徑150μm、中心距200μm,於對正角0°時,其效益分別為0.77%與0.91%,誤差值為0.14%;直徑150μm、中心距225μm,於對正角0°時,其效益分別為0.46%與0.53%,誤差值為0.07%;直徑200μm、中心距250μm,於對正角0°時,其效益分別為1.24%與1.39%,誤差值為0.15%,顯示模擬結果於對正角0°時有相當高的可靠性,若能提升微透鏡製作能力技術,可改善實驗結果效益。
經研究分析得知,MLA有效降低太陽電池模組入射光反射,增加太陽電池表面二次折射,當太陽電池模組在入射太陽光對正角於0° ~ 60°之間,仍擁有穩定的發電功率,並提昇模組發電效益2%以上,因此本研究一體成型封裝之微透鏡陣列太陽電池模組技術,具有大量製造而節省成本及有效提升模組發電效益等優點,可應用在未來太陽光電產品開發。
關鍵字:太陽電池模組、類LIGA製程、微透鏡陣列、電鑄、ETFE
In view of the gradual depletion of the Earth's energy, a lot of photovoltaic module(PV module) import life supply. however, the conversion efficiency of silicon PV module of about 14% ~ 16%, to reduce the PV module and system manufacturing cost, promote application, enhance the efficiency of the conversion is priority. Currently many research methods for enhancing the PV module efficiency, which use lens focus characteristic, to concentrate the sunlight to the PV module, in order to enhance the conversion efficiency, there is a significant benefit.
In this study, use optical software aided design micro-lens and LIGA like process manufacture micro-lens mold with PV module encapsulation transfer printing and measure power. By the micro-lens array (MLA),the fill factor、diameter、alignment angle and other parameters, research PV module power. Optical software simulation the micro-lens focal length of 400μm ~ 440μm, the diameter of 100μm、150μm、200μm and the fill factor of 40%、50%、60%, computation the power of PV module on different alignment angle of 0° ~ 75°, use LIGA like process manufacture micro-lens array mold with the electroforming successfully to get high fill factor micro-lens array nickel mold. When laminated encapsulation, the nickel mold put the PV module surface, is the processing Surface material DuPont ETFE film bottom base, obtained surface of the PV module with micro-lens array by hot pressing transfer, finally, using the cell test to measure PV module power.
The simulation results showed: when the PV module on the alignment angle 0 ° micro-lens focal length 420μm, increase benefit up to 6.22%. When the micro-lens of diameter are 100μm、150μm、200μm, gap are 25μm、50μm、75μm and the equal gap, the fill factor increase due to the with the diameter increased. Therefore, micro-lens diameter is 200μm, gap 25μm, on the alignment angle of 0°, the maximum increase benefit 1.6%;when the micro-lens of diameter are 100μm、150μm、200μm, fill factor are 40%、50%、60% and the fill factor, the micro-lens diameter is 100μm, fill factor 60%, on the alignment angle of 0°, the maximum increase benefit 1.31%, mainly because of the micro-lens height is small, with the light of contact angle is also small, increase the antireflection, can reduce the direct reflection.
The experimental results showed: in this study, the development of the MLA DuPont ETFE, the incident sunlight of the alignment angle from 0° to 60°, micro-lens can focus light, the light is refracted to small incident angle to the solar cell, increasing the radiation intensity on the solar and can reduce direct reflection of sunlight, increase twice refract opportunity. Micro-lens diameter is 200μm, center distance 250μm, fill factor 58%, better than the micro-lens diameter is 150μm, center distance 200μm, fill factor 51%, the fill factor of more than 7%, show that, when the higher fill factor of micro-lens in the same area, micro-lens array can provide better power. Compare simulation result with experimental result, the micro-lens diameter is 150μm, center distance 200μm, on the alignment angle of 0°, the benefit are 0.77% and 0.91%, error value is 0.14%;the micro-lens diameter is 150μm, center distance 225μm, on the alignment angle of 0°, the benefit are 0.46% and 0.53%, error value is 0.07%;the micro-lens diameter is 200μm, center distance 250μm, on the alignment angle of 0°, the benefit are 1.24% and 1.39%, error value is 0.15%, shows simulation result are reliability of on the alignment angle 0°. If can improve the micro-lens manufacture technology can enhance the experimental result benefit.
The research shows of sun from sunrise to sunset alignment angle 0° ~ 60°, power to increase the maximum gain benefit of 2%, can reduce the direct reflection of the incident light increase refraction and can be used in high latitude places with sunshine time is less, provide a stable output power. This is laminated encapsulation technology of micro-lens array PV module integrated and can cost-down large of number produced.
Keywords: PV module、LIGA like Process、Electroforming、Micro-lens array (MLA)、ETFE
摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表 目 錄 vi
圖 目 錄 vii
符 號 說 明 x
第一章 緒論 1
1-1前言 1
1-2文獻回顧 2
1-2-1微透鏡研究 2
1-2-2結晶矽太陽電池發展 5
1-2-3提升矽晶太陽電池效率方法 7
1-3研究動機與目的 7
第二章 理論基礎 22
2-1光學理論 22
2-2熱熔回流模型理論 22
第三章 光學模擬 29
3-1微透鏡繪製設計及參數 29
3-2光學模擬軟體 29
第四章 封裝轉印之微透鏡陣列太陽電池模組設計與製作 37
4-1微影製程 37
4-2精密電鑄 40
4-3封裝轉印微透鏡之太陽電池模組 41
第五章 結果與討論 53
5-1光學模擬結果 53
5-1-1焦距對功率之影響 53
5-1-2間距對功率影響 54
5-1-3填充率對功率影響 54
5-2實驗結果與檢測 54
5-2-1微透鏡檢測 54
5-2-2拉力測試 55
5-2-3 MLA太陽電池模組檢測 55
第六章 結論 76
6-1結論 76
6-2未來發展 76
參考文獻 78
簡 歷 82
參考文獻
[1]S. Sizinger, J. Jahns, 1999, Microoptics, Wiley-Vch Verlag.
[2]H. W. Choi, C. Liμ, E. Gμ, G. McConnell, J. M. Girkin, J. M. Watson and M. D. Dawson, 2004, “GaN Micro-lightemitting Diode Arrays with Monolithically Integrated Sapphire Microlenses”, Applied Physics Letters, Vol. 84, pp. 2253, February.
[3]M. K. Wei, I-L Su, 2004, “Method to Evaluate the Enhancement of Luminance Efficiency in Planar OLED Light Emitting Devices for Microlens Array”, Optics Express, Vol. 12, pp. 5777-5782, November.
[4]E. H. Park, M. J. Kim, Y. S. Kwon, 1999, “Microlens for Efficient Coupling Be-tween LED and Optical Fiber”, IEEE Photonics Technology Letters, Vol. 11, pp. 439, April.
[5]S. R. Cho, J. Kim, K. S. Oh, S. K. Yang, J. M. Baek, D. H. Jang, T. I .Kim, H. Jeon, 2002, “Enhanced Optical Coupling Performance in An InGaAs Photodiode Inte-grated with Wet-etched Microlens,”, IEEE Photonics Technology Letters, Vol. 14, pp. 378-380, March.
[6]林暉雄,2004, “微光學元件之設計技術與應用”,科儀新知, 25 卷,第4 期,頁47-61,2月。
[7]N. F. Borrelli, D. L. Morse, R. H. Bellman, W. L. Morgan, 1985, “Photolytic Tech-nique for Producing Microlenses in Photosensitive Glass”, Applied Optics, Vol. 24, pp. 2520-2525, August.
[8]D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, 1994, “Microjet Fabrication of Microlens Arrays,” IEEE Photonics Technology Letters, Vol. 6, pp. 1112-1114, September.
[9]Μ. Köhler, A. E. Guber, W. Bier, M. Heckele, 1996, “Fabrication of Microlenses by Plasmaless Isotropic Etching Combined with Plastic Moulding”, Sensors and Actuators A: Physical, Vol. 53, pp. 361-363, May.
[10]J. O. Choi, J. A. Morse, J. C. Corelli, J. P. Silverman, H. Bakhru, 1988, “Degrada-tion of Poly(Methylmethacrylate) by Deep ultraviolet X-RayElectron Beam and Proton Beam Irradiations”, Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 6, pp. 2286-2289, November.
[11]C. S. Lee, C. H. Han, 2001, “A Novel Refractive Silicon Microlens Array Μsing Bulk Micromachining Technology”, Sensors and Actuators A: Physical, Vol. 88, pp. 87-90, January.
[12]D. S. Ko, “A Decompression Method for the Fabrication of Polymer Microlens Arrays”, Infrared Physics & Technology, Vol. 45, pp. 177-180, May.
[13]N. S. Ong, Y. H. Koh, Y. Q. Fu, 2002, “Microlens Array Produced Μsing Hot Embossing Process”, Microelectronic Engineering, Vol. 60, pp. 365-379, April.
[14]S. I. Chang, J. B. Yoon, 2004, “Shape-controlled High Fill-factor Microlens Arrays Fabricated by A 3D Diffuser Lithography and Plastic Replication Method”, Optics Express, Vol. 12, pp. 6366-6371, December.
[15]J. J. Wang, A. Nikolov, Q. H. Wu, 2006, “Nano and Microlens Arrays Grown Μsing Atomic Layer Deposition,” IEEE Photonics Technology Letters, Vol. 18, pp. 2650-2652, December.
[16]Z. D. Popovic, R. A. Sprague, G. A. Neville Connell, 1988, “Technique for Mono-lithic Fabrication of Microlens Arrays”, Applied Optics, Vol. 27, pp. 1281-1284, April.
[17]A. A. M. Sayigh, 1977, Solar Energy Engineering, Chapter 3, Academic Press, New York.
[18]T. Markvart, 1994, Solar electricity, Chapter 2, Wiley, ΜK.
[19]中央氣象局,http://www.cwb.gov.tw/。
[20]F. Treble, 1998, “Milestones in the Development of Crystalline Silicon Solar Cell”, Renewable Energy, Vol. 15, pp. 473-478, December.
[21]D. M. Bagnall, M. Boreland, 2008, “Photovoltaic Technologies”, Energy Policy, Vol. 36, pp. 4390-4396, December.
[22]A. R. Burgers, 2005, New Metallisation Patterns and Analysis of Light Trapping for Silicon Solar Cells, Μniversiteit Μtrecht, Ph.D thesis, pp. 24-31.
[23]E. Skoplaki, J. A. Palyvos, 2009, “On the Temperature Dependence of Photovoltaic Module Electrical Performance: A Review of Efficiency/Power correlations” ,Solar Energy , Vol. 83, pp.614–624, May.
[24]A. Goetzberger, J. Luther, G. Willeke, 2002, “Solar Cells:Past, Present, Future”, Solar Energy Materials & Solar Cells, Vol. 74, pp. 1-11, October.
[25]S. W. Glunz, 2006, “New Concepts for High-Efficiency Silicon Solar Cells”, Solar Energy Materials & Solar Cells, Vol. 90, pp. 3276-3284, November.
[26]Μ. Gangopadhyay, H. Saha, S. K. Dutta, K. Kim, K.Chakrabarty, J. Yi, 2002, “Front Grid Design for Plated Contact Solar Cells”, 29th IEEE Photovoltaic Spe-cialists Conference, pp. 399-402, ΜSA, May 19-24.
[27]A. W. Blakers, 1993, “Low Loss Metallisation of Solar Cells”, 23th IEEE Photo-voltaic Specialists Conference, pp. 347-351, Australian, May 10-14.
[28]M. M. Hilali, A. Rohatgi, 2004, “A Review and Μnderstanding of Screen- Printed Contacts and Selective–Emitter Formation”, 14th Workshop on Crystalline Silicon Solar Cells and Modules, Colorado, pp.11-13, ΜSA, August 8-11.
[29]F. C. Marques, J. Μrdanivia, I. Chambouleyron, 1998, “A Simple Technology to Improve Crystalline Silicon Solar Cell Efficiency”, Solar Energy Materials & Solar Cells, Vol. 52, pp. 285-293, April.
[30]F. Huster, 2005, “Investigation of the Alloying Process of Screen Printed Alumi-nium Pastes for the BSF Formation on Silicon Solar Cells”, 20th European Photo-voltaic Solar Energy Conference and Exhibition, pp. 1466-1469, Spain, June 6-10.
[31]J. Zhao, M. A. Green, 1991, “Optimized Antireflection Coatings for High Efficien-cy Silicon Solar Cells”, IEEE Transactions on Electron Devices, Vol. 38, pp. 1925-1934, August.
[32]G. S. Vicente, A. Morales, M. T. Gutierrez, 2002, “Sol–Gel TiO2 Antireflective Films for Textured Monocrystalline Silicon Solar Cells”, Thin Solid Films, Vol. 403, pp. 335-338, February.
[33]S. Y. Lien, D. S. Wu, W. C. Yeh, J. C. Liu, 2006, “Tri-layer Antireflection Coatings (SiO2/SiO2-TiO2/TiO2) for Silicon Solar Cells Μsing a Sol–Gel Technique”, Solar Energy Materials & Solar Cells, Vol. 90, pp. 2710-2719, October.
[34]E. C. Cho, J. Xia, A. G. Aberle, M. A. Green, 2002, “Antireflection and Surface Passivation Behaviour of SiO2/Si/SiO2 Quantum Wells on Silicon”, Solar Energy Materials & Solar Cells, Vol. 74, pp. 147-154, October.
[35]F. Duerinckx, J. Szlufcik, 2002, “Defect Passivation of Industrial Multicrystalline Solar Cells Based on PECVD Silicon Nitride”, Solar Energy Materials & Solar Cells, Vol. 74, pp. 231-246, April.
[36]G. R. Whitfield, R. W. Bentley, C. K. Weatherby, A. C. Hunt, H. D.Mohring, F. H. Klotz, P. Keuber, J. C. M. Ano, E. A. Garvi, 1999, “The Development and Testing of Small Concentrating PV Systems,” Solar Energy, Vol. 67, pp. 23-34, July.
[37]J. Yang, A. Anerjee, S. Guha, 2003, “Amorphous Silicon Based Photovol-taics—from Earth to the ‘‘Final Frontier’’, Solar Energy Materials & Solar Cells, Vol.78, pp. 597–612, July.
[38]M. A. Green, J. Zhao, A. Wang, S. R. Wenham, 2001, “Progress and Outlook for High-efficiency Crystalline Silicon Solar Cells,” Solar Energy Materials & Solar Cells, Vol. 65, pp. 9-16, January.
[39]張心豪,2006,微透鏡陣列製作全天太陽能電池,國立清華大學,碩士論文。
[40]洪時傑,2011,微透鏡應用於太陽能板集光效益提升之研究,國立高雄應用科技大學,碩士論文。
[41]J.K. Tseng, Y.J. Chen, C.T. Pan, T.T. Wub , M.H. Chung, 2011, “Application of Optical Film with Micro-lens Array On A Solar Concentrator” ,Solar Energy, Vol. 85, pp. 2167-2178, September.
[42]J.H. Karp, Eric J. Tremblay, Joseph E. Ford, “Micro-Optic Solar Concentration and Next-Generation Prototypes” , IEEE,35th,2010
[43] 耿繼業,何建娃,2010,幾何光學,三版,全華出版社發行,台北。
[44] 王騰一,2010,微透鏡陣列製程研究,國立東華大學,碩士論文。
[45]N. F. Borrelli, 1994, “Efficiency of microlens array for projection LCD”, 44th Electronic Components and Technology Conference, pp. 338-345, New York, May 1-4.
[46]Thick Film Resist AZ P4000 Series, AZ Electronic Materials, 2003.
[47]昇 鋐 理 化 有 限 公 司,鎳電鑄槽操作手冊。
[48]Dupont,http://www2.dupont.com/Teflon_Industrial/en_ΜS/。
[49]Dupont,http://www2.dupont.com/Tedlar_PVF_Film/en_ΜS/。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔