(3.238.173.209) 您好!臺灣時間:2021/05/12 12:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蔡佳洲
研究生(外文):Chai-Chou Tsai
論文名稱:電泳沉積法製備熔融石英精密鑄造陶殼模面層
論文名稱(外文):Using Fused Silica as the Primary Coat of Ceramic Shell Mold for Investment Casting by Electrophoretic Deposition
指導教授:楊國和楊國和引用關係
指導教授(外文):Koho Yang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
中文關鍵詞:電泳沉積精密鑄造熔融石英表面粗糙度陶殼模
外文關鍵詞:Electrophoretic DepositionInvestment CastingFused SilicaSurface RoughnessCeramic Shell Mold
相關次數:
  • 被引用被引用:1
  • 點閱點閱:710
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
本研究是應用電泳沉積法製備熔融石英精密鑄造陶殼模面層,改善粉體顆粒排列狀態達到良好的被覆效果。本法的優點有製程簡易、設備成本低廉、高沉積速率、表面精度高、可以被覆各種表面形狀複雜之導電基材等。本研究擬在導電塑膠基材及銀鏡處理之蠟模表面以電泳沉積方式沉積熔融石英陶殼模面層,待其乾燥後再反覆沾漿、淋砂、乾燥等作業,得到一定厚度之陶殼模。
電泳沉積法探討電壓、電流、時間、pH值、粉體濃度及添加劑對沉積重量及薄膜厚度等影響及討論懸浮溶液內添加分散劑對懸浮液的影響。粉體間的鍵結強度低導致電泳層易剝落,故添加高分子材料以化學鍵結方式增加電泳層附著能力。應用表面粗度儀、破斷強度試驗機、高溫透氣度機量測陶殼模之表面粗糙度、破斷強度(高溫強度、殘留強度)和高溫透氣度,分別探討不同製程對乾燥時間的影響,及觀察和分析金屬/陶殼模間之濕潤性。最後製備陶殼模進行鋁合金澆鑄。
實驗結果顯示:熔融石英沉積重量隨著輸出電壓遞增而增加,沉積速率隨沉積時間增加而逐漸下降,添加陰離子界面活性劑硬脂酸及高分子黏著劑(PVB)於溶液內能提升懸浮溶液達到穩定及提升電泳層附著能力,電泳沉積製程所製備之陶殼模與傳統沾漿、淋砂方式相較時,電泳沉積法可縮短製作陶殼模面層之乾燥時間及改善陶殼模表面粗糙度,可獲得表面粗糙度較佳之鑄件,但陶殼模高溫透氣度值則稍差,陶殼模破斷強度值則稍遜。
Fused silica has been used as the primary coat for investment casting by electrophoretic deposition (EPD). With the application of EPD, the arrangement of powder particles was improved to acquire a better surface roughness. The EPD process has the following advantages, such as: simple facility, low cost, high deposition rate, high surface finish and a variety of complex surface shape of conductive substances can be coated. In this study, EPD process was used to fabricate a fused silica primary coat on the conductive plastic, and was set for drying. Then, the conventional shell building process, i.e., dipping, stuccoing and drying were practiced and repeated for several times to obtain a certain thickness as the backup layers for the ceramic shell mold. The effects of applied voltage, current, time, pH, powder concentration and additives on deposition weight and thickness were studied, and the effects of add dispersant in suspension. Owing to the low physical bond strength of the powder, the EPD layer is easily to peel off; therefore, to increase the adhesion force of the layer by chemical bond, the polymer material has been added. The surface roughness, modulus of rupture (MOR, high temperature strength and fired strength) and high temperature permeability of the ceramic shell mold were examined, the effects of applied drying time on different processes, then observed and analysis wetting of ceramic shell mold and metal. Finally casting of aluminum alloy.
The experimental results:Deposition weight of Fused silica was increased with the increase voltage, and deposition rate of Fused silica was reduce with the increase deposition time. It had to stable the suspension and increase the adhesion force of the layer that adding anionic type stearic acid and binder PVB. Comparison of the ceramic shell mold fabricated by EPD process with the conventional shell building by lost wax process, it were shorten the drying time and Improve the surface roughness to get batter surface roughness of casting by EPD, but high temperature permeability and MOR of the ceramic shell mold were somewhat less.
摘 要 I
目 錄 VI
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1精密鑄造法 1
1.1.1精密鑄造法 1
1.1.2精密鑄造法種類與特性 2
1.2電泳沉積法 6
1.2.1 電泳沉積法 6
1.2.2 電泳沉積法機制 6
1.2.3電泳沉積方式 6
1.2.4懸浮液種類 7
1.2.5 電泳沉積法特性與應用 7
1.3研究動機與目的 10
第二章 理論基礎與文獻回顧 11
2.1 膠體系統分類 11
2.2膠體表面帶電原理 13
2.3膠體分散機制 15
2.4界面活性劑添加 17
2.5電雙層理論 18
2.6 DLVO理論 25
2.7 界面間濕潤行為 28
第三章 實驗方法 31
3.1基材製備 32
3.1.1導電塑膠 32
3.1.2鑄造用蠟 32
3.2陶瓷懸浮溶液配製 33
3.3電泳沉積製程 33
3.4陶殼模製作 35
3.4.1面層泥漿製備 35
3.4.2背層泥漿製備 35
3.4.3陶殼模製備 35
3.5陶殼模機械性能及透氣度量測 37
3.5.1陶殼模機械性能量測 37
3.5.2透氣度量測 38
3.6附著力試驗 39
3.6.1剝落試驗 39
3.6.2方格黏帶法 39
3.6.3X切割黏帶法 41
3.7分析儀器 42
3.7.1界面電位儀 42
3.7.2 pH量測儀 42
3.7.3破斷強度試驗機 43
3.7.4高溫透氣度試驗機 43
3.7.5表面粗糙度量測儀 44
3.7.6光學顯微鏡 44
3.7.7 場發射型掃描式電子顯微鏡 45
3.7.8接觸角量測儀 46
第四章 結果與討論 47
4.1熔融石英電泳沉積行為 47
4.2輸出電壓與沉積時間對沉積行為的影響 48
4.3粉末濃度對沉積行為的影響 52
4.4 硬脂酸對陶瓷懸浮液的影響及沉積行為 54
4.5 PVB高分子對電泳層附著力的影響 58
4.6不同製程方式製備對陶殼模乾燥時間的影響 60
4.7不同製程方式製備對陶殼模破斷強度的影響 63
4.8不同製程方式製備對陶殼模透氣度的影響 65
4.9不同製程方式製備對陶殼模及鑄件表面粗糙度的影響 68
4.10金屬∕不同製程方式製備之陶殼模濕潤性比較 71
第五章 結論 76
參考文獻 78
1.曹龍泉,“精密鑄造訓練教材”,行政院勞工委員會職業訓練局,2001,p. 57。
2.R. P. Beeley, R. F. Smart, “Investment Casting”, The Institute of Materials, 1995, pp. 1-29.
3.R. L. Rusher, “Strength Factors of the Ceramic Shell Molds-Part I”, Cast Metal Research Journal, 1974, pp. 149-153.
4.R. L. Rusher, “Strength Factors of the Ceramic Shell Molds-Part Ⅱ”, Cast Metal Research Journal, 1975, pp. 21-26.
5.C. Yuan, S. Jones, “Investigation of Fiber Modified Ceramic Moulds for Investment Casting”, Journal of the European Society, 2003, Vol. 23, pp. 399-407.
6.林宗獻,“精密鑄造”,全華科技圖書股份有限公司,1986,p. 7。
7.ASM International Handbook Committee, “Metals Handbook”, Ninth Edition, Vol.15, American Society for Metals, 1988, p. 250.
8.Investment Casting Institute, “Investment Casting Handbook”, 1980, p. 1.
9.P. Sarkar, P. S. Nicholson, “Electrophoretic Deposition (EPD): Mechanisms, Kinetics, and Application to Ceramics”, J. Am. Ceram. Soc. 1996, 79, pp. 1987-2002.
10.L. Besra, M. Liu, “A Review on Fundamentals and Applications of Electrophoretic Deposition (EPD)”, Progress in Materials Science, 52, 2007, pp. 1-61.


11.A. Formeto, L. Montanaro, and M. V. Swain, “Micromechanical characterization of electrophoretic-deposited green films”, J. Am Ceram. Soc., 82, 1999, pp. 3251-3528.
12.B. Frrari, R. Moreno, “The Conductivity of Al2O3 Slips for Electrophoretic Deposition”, Materials Letters, 28, 1996, pp. 353-355.
13.F. Tang, T. Uchikoshi, Y. Sakka, “Electrophoretic Deposition Behavior of Aqueous Nanosized Zinc Oxide Suspensions”, J. Am. Ceram. Soc. 85, 2002, pp. 2161-2165.
14.R. Fischer, E. Fischer, G. D. Portu, E. Roncari, “Preparation of Ceramic Micro-laminate by Electrophoresis in Aqueous System”, J. Mater. Sci. Lett. 14, 1995, pp. 25-27.
15.Y. H. Chen, T. Li, F. Y. C. Boey, J. Ma, “Electrophoretic Deposition and Characterization of Helical Piezoelectric Actuator”, Ceramics International, 34, 2008, pp. 1-6.
16.P. S. Nicholson, P. Sarkar, X. Haung, “Electrophoretic Deposition and Its Use Synthesize ZrO2/Al2O3 Micro-laminate Ceramic/Ceramic Composites”, J. Mater. Sci, 28, 1993, pp. 6274-6278.
17.Z. Xu, G. Rajaram, J. Sankar, D. Pai, “Electrophoretic Deposition of YSZ Electrolyte Coatings for Solid Oxide Fuel Cells”, Surface and Coatings Technology, 201, 2006, pp. 4484-4488.
18.F. Hosseinbabaei, B. Raissidehkordi, “Electrophoretic Deposition of MgO Thick Films from An Acetone Suspension”, Journal of the European Ceramic Society, 20, 2000, pp. 2165-2168.

19.T. Ishihara, K. Sato, Y. Takita, “Electrophoretic Deposition of Y2O3-Stabilized ZrO2 Electrolyte Films in Solid Oxide Fuel Cells”, J. Am. Ceram. Soc., 79, 1996, pp. 913-919.
20.Y. Lee, C. Kuo, C. Shih, I. Hung, K. Fang, S. Wen, M. Wang, “Characterization on the Electrophoretic Deposition of the 8 mol% Yttria-stabilized Zirconia Nanocrystallites Prepared by a Sol-gel Process”, Materials Science and Engineering, A 445-446, 2007, pp. 347-354.
21.L. Jia, Z. Lü, X. Huang, Z. Liu, K. Chen, X. Sha, G. Li, W. Su, “Preparation of YSZ Film by EPD and Its Application in SOFCs”, J. Alloys and Compounds, 424, 2006, pp. 299-303.
22.Y. Wang. I. Leu, M. Hon, “Kinetics of Electrophoretic Deposition for Nanocrystalline Zinc Oxide Coatings”, J. Am. Ceram. Soc., 87, 2004, pp. 84-88.
23.H. Hadraba, K. Maca, J. Cihlar, “Electrophoretic Deposition of Alumina and Zirconia Ⅱ. Two-component Systems”, Ceramics International, 30, 2004, pp. 853-863.
24.L. Besra, S. Zha, M. Liu, “Preparation of NiO-YSZ/YSZ Bi-layers for Solid Oxide Fuel Cells by Electrophoretic Deposition”, J. Power Sources, 160, 2006, pp. 207-214.
25.Koho Yang, J.H. Shen, K. Y. Yang, I. M. Hung, K. Z. Fang, M. C. Wang, “Characterization of the Yttria-stabilized Zirconia Thin Film Electrophoretic Deposited on La0.8Sr0.2MnO3 Substrate”, J. Alloys and Compounds, 436, 2007, pp. 351-357.

26.F. Chen, M. Liu, “Preparation of Yttria-stabilized Zirconia (YSZ) Films on La0.85Sr0.15MnO3 (LSM) and LSM-YSZ Substrates Using An Electrophoretic Deposition (EPD) Process”, Journal of the European Ceramic Society, 21, 2001, pp. 127-134.
27.G. Anné, K. Vanmeensel, B.Neirinck, O. V. D. Biest, J. Vleugels, “Ketone-amine Based Suspensions for Electrophoretic Deposition of Al2O3 and ZrO2”, Journal of the European Ceramic Society, 26, 2006, pp. 3531-3537.
28.D. J. Shaw, “Introduction to Colloid and Surface Chemistry”, 4th edition, Butterworth-Heinemann, 1992, pp. 1-5.
29.趙承琛博士 編著,“界面科學基礎”,復文書局,1985,pp. 6-9。
30.張有義,郭蘭生譯,“膠體及界面化學入門”,高立圖書有限公司,1996,pp. 4-6。
31.C.S. Hirtzel., and R. Rajagopalan, Colloid Phenomena, Noyes Publications, New Jersey, 1985, p. 17。
32.王冠斐,賴山強,“膠體中的物理簡介”,物理雙月刊,2001,Vol.23,No.4,pp. 482-485。
33.ibid. Ref.28, pp. 174-189.
34.ibid. Ref.30, pp. 191-208.
35.V. A. Hackley, P. Somasundaran, J. A. Lewis, “Polymers in Particulate Systems: Properties and Applications”, Marcel Dekker, 2002, pp. 27-38.
36.C. A. Schacht, “Refractories Handbook”, Marcel Dekker, 2004, p. 339.
37.J. A. Lewis, “Colloidal Processing of Ceramics”, J. Am. Ceram. Soc. 83, 2000, pp. 2341-2359.

38.I. Zhitomirsky, “Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects”, Advances in colloid and interface science. 97, 2002, pp. 279-317.
39.張豐志,“應用高分子手冊”,五南文化,2003,p.515。
40.P. C. Hiemenz, R. Rajagopalan, “Principles of Colloid and Surface Chemistry”, Taylor & Francis, 1997, pp. 499-531.
41.R. J. Hunter, “Foundations of Colloid Science”, 2nd edition, Oxford, 2001, p. 320.
42.謝杰廷,“電泳沉積法製備精密鑄造面層陶殼模”,高雄應用科技大學模具工程系研究所碩士論文,2008,pp. 23-41。
43.C. A. Miller, P. Neogi, “Interfacial Phenomena: Equilibrium and Dynamic Effects”, Marcel Dekker, 1985, p. 54-61.
44.淵達企業股份有限公司提供。
45.陳進昌,“以環繞電極進行電泳沉積製備精密鑄造面層陶殼模”,高雄應用科技大學模具工程系研究所碩士論文,2008,p.34。
46.“Ceramics Testing Guidebook”, Investment Casting Institute, 2005, pp. 87-88.
47.ASTM C133-97, “Standard Test Methods for Cold Crushing Strength and Modulus of Rupture of Refractories”, ASTM International, 2003, pp.1-6.
48.CNS 10757塗料一般檢驗法,“有關塗膜之物理、化學抗性之試驗法”,1996, pp. 8-12。
49.R. N. Basu, C. A. Randall, M. J. Mayo, “Fabrication of Dense Zirconia Electrolyte Films for Tubular Solid Oxide Fuel Cells by Electrophoretic Deposition”, J. Am. Ceram. Soc. 84, 2001, pp. 33-40.

50.I. Zhitomirsky, R. Chaim, L. Gal-Or, and H. Bestgen, “Electrochemical Al2O3-Cr2O3 alloy coatings on non-oxide ceramic substrates”, Journal of Materials Science. 32, 1997, pp. 5205-5213.
51.Y. C. Wang, I. C. Leu, M. H. Hon, “Kinetics of electrophoretic deposition for nanocrystalline zinc oxide coatings”, J. Am. Ceram. Soc. 87, 2004, pp. 84-88.
52.J. Zhang and B. I. Lee, “Electrophoretic deposition and characterization of micrometer-scale BaTiO3 based X7R dielectric thick films,” J. Am. Ceram. Soc. 83, 2002, pp. 2417-2422.
53.劉佳玫,“奈米二氧化鈦電泳沉積及其性質”,國立成功大學材料科學及工程學系碩士論文,2004,pp. 53。
54.S. Usui and T. W. Healy, “Zeta Potential of Stearic Acid Monolayer at the Air–Aqueous Solution Interface”, Journal of Colloid and Interface Science, 250, 2002, pp. 371–378.
55.高 枯,艾德生,趙昆,戴遐明,“高能球磨法製備氧化鋯一硬脂酸系相變儲能材料”,武漢理工大學學報,Vo1.29, No.10, Oct. 2007, pp.1671-4431.
56.Yanbao Li and Wenjian Weng, “Surface modification of hydroxyapatite by stearic acid: characterization and in vitro behaviors”, J Mater Sci: Mater Med, 2008, pp. 19-25.
57.I. Zhitomirsky, A. Petric, “Electrophoretic deposition of ceramic materials for fuel cell applications”, Journal of the European Ceramic Society 20, 2000, pp. 2055-2061.
58.I. Zhitomirsky, A. Petric, “Electrophoretic deposition of electrolyte materials for solid oxide fuel cells”, Journal of Materials Science, 39, 2004, pp. 825-831.
59.李裕文,陳奉一,邱春豐,蘇國璋,“精密鑄造殼模乾燥之二-乾燥條件對殼模強度的影響”,鑄造工程學刊,1996,December,pp. 84-88。
60.Manuel Guerra Jr., “Factors affecting shell strength and the effect of dry time on shell strength”, 22nd EICF Conference, Paris, 1992, pp .1-25.
61.莊勝傑,“PVA高分子添加劑對泥漿及陶殼模性能的影響”,高雄應用科技大學模具工程系研究所碩士論文,2006,p. 45。
62.郭彥甫,“不同背砂粒度及層數對精密鑄造陶殼模性能之影響”,高雄應用科技大學模具工程系研究所碩士論文,2010,pp. 63-64。
63.郭崇銘,“快速模具精密鑄造製程陶殻模破裂原因之研究”,高雄應用科技大學模具工程系研究所碩士論文,2009,pp. 21-27。
64.邱春豐,“精密鑄造陶瓷殼模之原理及應用”,精密鑄造技術研討會,工業技術研究院工業材料研究所,高雄,1988,pp.72-97。
65.姜不居,“熔模精密鑄造”,北京,機械工業出版社,1986,pp. 47-67。
66.N. Sobczak, M. Singh, R. Asthana, “High-temperature Wettability Measurements in Metal/Ceramic Systems – Some Methodological issues”, Current Opinion in Solid State and Materials Science , 9, 2005, pp. 241-253.
67.A. Passerone, M. L. Muolo, R. Novakovic, D. Passerone, “Liquid Metal/Ceramic Interactions in the (Cu, Ag, Au)/ZrB2 Systems”, Journal of the European Ceramic Society 27, 2007, pp. 3277-3275.
68.P. Wynblatt, “The effects of Interfacial Segregation on Wetting in Solid Metal-on-Metal and Metal-on-Ceramic Systems”, Acta Materialia 48, 2000, pp. 4439-4447.

69.N. Eustathopoulos, M. G. Nicholas, B. Drevet, “Wettability at High Temperatures”, Pergamon, 1999, pp. 43-45.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔