(3.235.191.87) 您好!臺灣時間:2021/05/14 21:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳燕萍
研究生(外文):Yan-Ping Chen
論文名稱:允許延遲付款下之不良品可立即退貨的EOQ模型
論文名稱(外文):EOQ models with immediate return for defective items under permissible delay in payments
指導教授:于鴻福于鴻福引用關係
指導教授(外文):Hong-Fwu Yu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:商務經營研究所
學門:商業及管理學門
學類:一般商業學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:76
中文關鍵詞:EOQ模型不良品允許延遲付款
外文關鍵詞:EOQ modelsdefective itemspermissible delay in payments
相關次數:
  • 被引用被引用:0
  • 點閱點閱:331
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
EOQ模型已被業界廣泛地做為存貨控制的決策工具。傳統的EOQ模型假設當零售商收到產品時即付清貨款;然而,在現實生活中,供應商可能會提供零售商各種不同的允許延遲付款期限,藉此吸引新客戶並提高其銷售額。至目前為止,已有針對不完美產品探討其延遲付款的EOQ模型,惟其中大多假設不良品為次級品或廢品,可重加工變成良品或以較低的價格賣出。然而,實務上由於零售商的日益強勢、存貨空間的受限或消費者對品質的要求,被檢驗出的不良品可能會被立即地退回給供應商。本文之研究目的即是要針對不良品被零售商檢驗出後會立即退貨給供應商的存貨模型,探討在供應商給予允許延遲付款之條件下,零售商之最適訂購批量。另外,本文亦提供一數值範例以說明所提出的存貨模型。
EOQ models are widely used by practitioners as a decision-making tool for the control of inventory. In the traditional EOQ model, it was assumed that the retailer must be paid for the items as soon as the items are received. However, in real world, the supplier may offer the retailer many different trade credits to attract new customers and increase sales. Although most of EOQ models with defective items under permissible delay in payments have assumed that defective items are poor-quality items or scrap items, and can be restored to good-quality items or sold at a discounted price. However, in practice, due to the increasingly exerted power of retailers, the limited inventory space of retail stores, or the strict quality requirement of customers, defective items detected in the screening process of a lot may be returned to the supplier immediately. The main purpose of this article is to analyze an EOQ model where the defective items are returned to the supplier immediately during the process of 100% inspection, how a retailer can determine the optimal lot size when the supplier provides a permissible delay in payments. Finally, a numerical example is provided to illustrate the proposed model.
摘要 i
ABSTRACT ii
誌謝 iii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 6
1.3 研究架構 7
第二章 不良率為常數之Hsu & Yu (2011) 模型的簡介 8
2.1 符號與假設 8
2.2模型推導 10
第三章 允許延遲付款下之不良品可立即退貨的EOQ模型 14
3.1 符號與假設 14
3.2 模型推導 15
第四章 數值範例 56
第五章 結論與未來研究方向 63
5.1 結論 63
5.2 未來研究方向 63
參考文獻 65
1.Abad, P. L., 2001, “Optimal price and order size for a reseller under partial backordering”, Computers & Operations Research, 28, pp. 53-65.

2.Cardenas-Barron, L. E., 2000, “Observation on: Economic production quantity model for items with imperfect quality”, International Journal of Production Economics, 67, pp. 201.

3.Chang, H. C., 2004, “An application of fuzzy sets theory to the EOQ model with imperfect quality items”, Computers & Operations Research, 31, pp. 2079-2092.

4.Chu, P. and Chen, P. S., 2002, “A note of inventory replenishment policies for deteriorating items in an exponentially declining market”, Computers & Operations Research, 29, pp. 1827-1842.

5.Chung, K. J. and Huang, Y. F., 2003, “The optimal cycle time for EPQ inventory model under permissible delay in payments”, International Journal of Production Economics, 84, pp. 307-318.

6.Dye, C. Y., 2007, “Joint pricing and ordering policy for a deteriorating inventory with partial backlogging”, Omega, 35, pp. 184-189.

7.Dye, C. Y. Ouyang, L. Y. and Hsieh, T. P., 2007, “Inventory and pricing strategies for deteriorating items with shortages: A discounted cash flow approach”, Computers & Industrial Engineering, 52, pp. 29-40.

8.Eroglu, A. and Ozdemir, G., 2007, “An economic order quantity model with defective items and shortages”, International Journal of Production Economics, 106, pp. 544-549.

9.Goyal, S. K., 1985, “Economic Order Quantity Under Conditions of Permissible Delay in Payments”, Journal of the Operational Research Society, 36, pp. 335-338.

10.Goyal, S. K. and Cardenas-Barron, L. E., 2002, “Note on: economic production quantity model for items with imperfect quality-a practical approach”, International Journal of Production Economics, 77, pp. 85-87.

11.Harris, F. W., 1913, “How many parts to make at once”, Factory, The Magazine of Management, 10, 135–136, 152.

12.Hsu, W. K. and Yu, H. F., 2011, “Economic Order Quality Model with Immediate Return for Defective Items”, ICIC Express Letters, 5, pp. 2215-2220.

13.Hsu, W. K. K. and Yu, H. F., 2009, “EOQ model for imperfective items under a one-time-only discount”, Omega, 37, pp. 1018-1026.

14.Hu, F. and Liu, D., 2010, “Optimal replenishment policy for the EPQ model with permissible delay in payments and allowable shortages”, Applied Mathematical Modelling, 34, pp. 3108–3117.

15.Huang, Y. F., 2003, “Optimal retailer’s ordering policies in the EOQ model under trade credit financing”, Journal of the Operational Research Society, 54, pp. 1011-1015.

16.Huang, Y. F., 2007, “Optimal retailer’s replenishment decisions in the EPQ model under two levels of trade credit policy”, European Journal of Operational Research, 176, pp. 1577-1591.

17.Hwang, H. and Shinn, S. W., 1997, “Retailer’s pricing and lot sizing policy for exponentially deteriorating products under the condition of permissible delay in payments”, Computers & Operations Research, 24, pp. 539-547.

18.Jaber, M. Y. Bonney, M. and Moualek, I., 2009, “An economic order quantity model for an imperfect production process with entropy cost”, International Journal of Production Economics, 118, pp. 26-33.

19.Jaber, M. Y. Goyal, S. K. and Imran, M., 2008, “Economic production quantity model for items with imperfect quality subject to learning effects”, International Journal of Production Economics, 115, pp. 143-150.

20.Jaggi, C. K. Goyal, S. K. and Goel, S. K., 2008, “Retailer’s optimal replenishment decisions with credit-linked demand under permissible delay in payments”, European Journal of Operational Research, 190, pp. 130-135.

21.Jamal, A. M. M. Sarker, B. R. and Wang, S., 2000, “Optimal payment time for a retailer under permitted delay of payment by the wholesaler”, International Journal of Production Economics, 66, pp. 59-66.

22.Khan, M. Jaber, M.Y. and Bonney, M., 2011, “An economic order quantity (EOQ) for items with imperfect quality and inspection errors”, International Journal of Production Economics, 133, pp. 113–118.

23.Maddah, B. and Jaber, M. Y., 2008, “Economic order quantity for items with imperfect quality: Revisited”, International Journal of Production Economics, 112, pp. 808-815.

24.Mehra, S. Agrawal, P. and Rajagopalan, M., 1991, “Some comments on the validity of EOQ formula under inflationary conditions”, Decision Sciences, 22, pp. 206-212.

25.Papachristos, S. and Konstantaras, I., 2006, “Economic ordering quantity models for items with imperfect quality”, International Journal of Production Economics, 100, pp. 148-154.
26.Rosenblatt, M. J. and Lee, H. L., 1986, “Economic production cycles with imperfect production processes”, IEE Transactions, 18, pp. 48-55.

27.Salameh, M. K. and Jaber, M. Y., 2000, “Economic production quantity model for items with imperfect quality”, International Journal of Production Economics, 64, pp. 59-64.

28.San Jose, L. A. Siciliab, J. and Garcı´a-Laguna, J., 2006, “Analysis of an inventory system with exponential partial backordering”, International Journal of Production Economics, 100, pp. 76-86.

29.Sarkar, B., 2012, “An EOQ model with delay in payments and stock dependent demand in the presence of imperfect production”, Applied Mathematics and Computation, 218, pp. 8295–8308.

30.Sarkar, B., 2012, “An EOQ model with delay in payments and time varying deterioration rate”, Mathematical and Computer Modelling, 55, pp. 367–377.

31.Sarker, B. R. and Kindi, M. Al, 2006, “Optimal ordering policies in response to a discount offer”, International Journal of Production Economics, 100, pp. 195-211.

32.Teng, J. T., 2002, “On the economic order quantity under conditions of permissible delay in payments”, Journal of the Operational Research Society, 53, pp. 915-918.

33.Teng, J. T. and Chang, C. T., 2009, “Optimal manufacturer’s replenishment policies in the EPQ model under two levels of trade credit policy”, European Journal of Operational Research, 195, pp. 358-363.
34.Teng, J. T. Chang, C. T. and Goyal, S. K., 2005, “Optimal pricing and ordering policy under permissible delay in payments”, International Journal of Production Economics, 97, pp. 121-129.

35.Teng, J. T. and Goyal, S. K., 2007, “Optimal ordering policies for a retailer in a supply chain with up-stream and down-stream trade credits”, Journal of the Operational Research Society, 58, pp. 1252-1255.

36.Wahab, M. I. M and Jaber, M. Y., 2010, “Economic order quantity model for items with imperfect quality, different holding costs, and learning effects: A note”, Computers & Industrial Engineering, 58, pp. 186-190.

37.Wee, H. M. Yu, J. and Chen, M. C., 2007, “Optimal inventory model for items with imperfect quality and shortage backordering”, Omega, 35, pp. 7-11.

38.Yoo, S. H. Kim, D. S. and Park, M. S., 2009, “Economic production quantity model with imperfect-quality items, two-way imperfect inspection and sales return”, International Journal of Production Economics, 121, pp. 255-265.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top