(3.236.231.61) 您好!臺灣時間:2021/05/11 22:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳泰宇
研究生(外文):Tai-Yu Chen
論文名稱:干涉式紅外線吸收結構之設計、製作與量測
論文名稱(外文):Design, Fabrication and Measurement of Interference-Type Infrared Absorbing Layers
指導教授:陳忠男
指導教授(外文):Chung-Nan Chen
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:光電與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:84
中文關鍵詞:干涉式紅外線吸收結構誤差分析吸收率CMOS製程
外文關鍵詞:interference-type infrared absorbing layersabsorptanceerror analysesCMOS
相關次數:
  • 被引用被引用:1
  • 點閱點閱:369
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究主旨在於設計與製作可相容於CMOS製程的干涉式紅外線吸收結構,並且研究不同的參數調整對於吸收峰位置與吸收峰值的影響,此結構是由一金屬製的反射薄膜及一金屬製的吸收薄膜中間夾著一層介質層所組合而成。首先以電磁理論探討紅外線經過干涉式紅外線吸收結構時的反射、透射與吸收,推導出能夠模擬干涉式吸收結構之吸收率的算式,並針對過去別人所發表的文獻中提出的包括入射角度及計算上的化簡對於吸收率的估算所造成的誤差也進行分析,其中也包含了改變入射角介質層折射率、厚度、金屬薄膜吸收層電阻率等條件時,化簡部分對於吸收率的影響,經過分析後可得出估算紅外線吸收率的算式不適用於:當波長小於2.5μm、折射率大於2.2、入射角大於40度以及介質層厚度介於450nm至950nm之間等範圍。
干涉式紅外線吸收結構的製作方面,利用厚度為100nm的鋁金屬薄膜作為干涉式吸收結構的反射層,以不同厚度的二氧化矽薄膜作為介質層,考量到此結構的製作需相容於CMOS製程,所以分別以不同厚度鈦金屬、鎳金屬以及矽化鈦薄膜做為干涉式紅外線吸收結構的吸收層,並且量測其紅外線吸收率,並且將其與估算的算式做比較,證實吸收率估算的算式可以模擬出目標波段的吸收率以及吸收峰的位置,且成功的製作出可應用於波長為3~5μm波段的紅外線吸收結構。
The purpose of the study is to design and fabricate CMOS-Compatible interference-type infrared absorbing layers. The structure is composed of a metallic reflection layer and a metallic absorbing layer with a dielectric spacer. The infrared absorptance of the structure has been derived by electromagnetic theory. The absorptance depends on five parameters: incident angle, the index of refraction, the thickness of dielectric layer and the sheet resistance of two metal films. The dependence of absorptance of the structure has been calculated in detail. Especially, the errors induced by using traditional simplified equations have been analyzed. The analysis indicates that the traditional equations can’t be used when the wavelength smaller than 2.5μm, the refraction index n of the dielectric layer larger than 2, the incent angle larger than 40 degree, the thickness d of dielectric smaller than 450nm and larger than 950nm.
The interference-type infrared absorbing layers have been fabricated successfully in this study. The material of the reflection layer of the structure is 1000Å thick aluminum film. The silicon dioxide films with different thicknesses were adopted as the dielectric spacer. The materials of the absorbing layer of the structure were titanium film, nickel film and titanium-silicide film with different thicknesses respectively. The mesurement of the infrared absorptance has been implemented by FTIR. And the results of mesurement have been compared with the calculation of the absorptance. Finally, the calculation can make a accurate estimation. And the interference-type infrared absorbing layer can be applied in the 3~5μm ranges.
摘 要
Abstract
誌 謝
目 錄
表目錄
圖目錄
第一章、緒論
1.1 研究目的敘述
1.2 文獻回顧
1.3 論文架構
第二章、理論基礎及量測儀器
2.1 紅外線分子吸收光譜
2.1.1 振動作用
2.1.2 轉動作用
2.1.3 量子理論
2.1.4 多原子分子
2.2 傅氏紅外線光譜儀
2.2.1 麥克森干涉儀 ( Michelson interferometer )
2.2.2 光譜轉換基本原理
2.2.3 優勢
2.3 矽化鈦
2.3.1 金屬矽化物
2.3.2 矽化鈦特性
2.4 薄膜X光繞射儀
2.4.1 X光繞射
2.4.2 薄膜繞射分析
2.5 光子晶體
第三章、吸收率分析與製程規劃
3.1 干涉式吸收層吸收率推導
3.2 誤差分析
3.3 製程規劃
3.3.1 干涉吸收結構製程步驟
3.3.2 製程討論
3.3.2.1金屬繞線圖案定義
3.3.2.2 ICP後光阻去除
3.3.2.3矽化鈦退火
第四章、量測結果與模擬分析
4.1二氧化矽之紅外線吸收
4.2 鈦吸收層之紅外線吸收
4.3鎳吸收層之紅外線吸收
4.4 光子晶體對吸收率之影響
第五章、結論與未來展望
5.1 結論
5.2 未來展望
參考文獻
[1]V. K. Jain, C. R. Jalwania, “Development of IR sensor using MEMS technology,” ISSS-SPIE, 190-198, 1999.
[2]黃文琦, “微熱阻型紅外線感測器之白金薄膜厚度效應分析,” 國立高雄應用科技大學光電與通訊工程研究所碩士論文, 2006.
[3]R. Lenggenhager, H. Baltes, T. Elbel, “Thermoelectric infrared sensors in CMOS technology,“ Sensors and Actuators A: Physical, vol. 37, 216-220, 1993.
[4]R. Lenggenhager, H. Baltes, J. Peer, M. Forster, “Thermoelectric infrared sensors by CMOS technology,“ IEEE Electron Device Letters, vol. 13, 454-456, 1992.
[5]J. M. Daisey, W. J. Angell, M. G. Apte, ”Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information,” indoor air, vol. 13, 53-64, 2003.
[6]H. Flessa, R. Ruser, P. Dorsch, T. Kamp, M. A. Jimenez, “Integrated evaluation of greenhouse gas emissions (CO2, CH4, N2O) from two farming systems in southern Germany,“ Agriculture, Ecosystems & Environment, vol. 91, 175-189, 2002.
[7]D. S. Bomse, D. C. Hovde, S. J. Chen, J. A. Silver, ”Early fire sensing using near-IR diode laser spectroscopy,“ Lasers and Applications, vol. 4817, 73-81, 2002.
[8]J. Schilz, “Applications of thermoelectric infrared sensors (thermopiles): gas detection by infrared absorption; NDIR,” Thermophysica minima, PerKin Elmer Optoelectronics, 1999.
[9]梁立緯, “以高溫微波電漿火炬轉化甲烷與二氧化碳之研究,” 私立中原大學化學工程學系碩士學位論文, 2006.
[10]C. N. Chen, W. C. Huang, “A CMOS-MEMS thermopile with low thermal conductance and a near-perfect emissivity in the 8-14 μm wavelength range,” IEEE Electron Device Letters, vol. 32, 96-98, 2011.
[11]W. Becker, R. Fetting, A. Gaymann, W. Ruppel, “Black gold deposits as absorbers for far infrared radiation,” Physica Status Solidi (b), vol. 194, 241-255, 1996.
[12]W. Becker, R. Fetting, W. Ruppel, “Optical and electrical properties of black gold layers in the far infrared,” Infrared Physics & Technology, vol. 40, 431-445, 1999.
[13]A. D. Parsons and D. J. Pedder, “Thin-Film infrared absorber structures for advanced thermal detectors,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 6, 1686-1689, 1988.
[14]K. C. Liddiard, “Application of interferometric enhancement to self- absorbing thin film thermal IR detectors,” Infrared Physics, vol. 34, 379-387, 1993.
[15]A. Roncaglia, F. Mancarella, G. C. Cardinali, “CMOS-Compatible fabrication of thermopile with high sensitivity in the 3-5 μm atmospheric window,” Sensors and Actuators B, vol 125, 214-223, 2007.
[16]吳國楨, “分子振動光譜學概論原理與研究,” 高立圖書股份有限公司, 2001.
[17]翁瑞裕, “紅外線光譜分析法,” 新北市, 高立圖書有限公司, 2001.
[18]劉光弘, “利用紅外光光譜建立即時微量煙霧監測系統及經濟型二氧化碳感測器之研究,” 私立中原大學醫學工程學系碩士學位論文, 2001.
[19]B. C. Smith, “Fundamentals of Fourier transform in Fourier transform infrared spectroscopy,” CRC Press, 1996.
[20]A. A. Michelson, “Visibility of interference-fringes in the focus of a telescope,” Philosophical Magazine Series 5, vol. 31, 256-259, 1891.
[21]蕭宏, “半導體製程技術導論-修訂版,” 台灣培生教育出版股份有限公司, 2002.
[22]林鴻志, “深次微米閘極技術之發展與未來驅勢(II),” NDL奈米通訊, vol. 5, 14-21, 1989.
[23]A. M. Piro, M. S. Alessandrino, C. Bongiorno, F. A. Via, C. Spinella, M. G. Grimaldi, “Electrical properties of TiSi2 clusters in poly Si,” Microelectronic Engineering, vol. 64, 197-204, 2002.
[24]A. Šatka, J. Liday, R. Srnánek, A. Vincze, D. Donoval, J. Kováč, M. Veselý, M. Michalka, “Characterisation of titanium disilicide thin films,” Microelectronics Journal, vol. 37, 1389-1395, 2006.
[25]W. K. Wan, S. T. Wu, “The formation of TiSi2 by RTA processing,” Thin Solid Films, vol. 298, 62-65, 1997.
[26]L. E. Haydock, “Characterization of TiSi2 process and electrical properties,” 23rd Annual Microelectronic Engineering Conference, 65-68, 2005.
[27]陳力俊, “微電子材料與製程,” 中國材料科學學會, 2000.
[28]林詠祥, “金屬矽化物薄膜與矽/矽鍺界面反應之研究,” 國立中央大學電機工程研究所碩士論文, 2004.
[29]J. B. Lasky, J. S. Nakos. O. J. Cain, and P. J. Geiss, “Comparison of transformation to low-resistivity phase and agglomeration of TiSi2 and C0Si2,” IEEE Transactions on Electron Devices, VOL. 38, 262-269, 1991.
[30]E. H. Lim, G. Karunasiri, S. J. Chua, H. Wong, K. L. Pey, and K. H. Lee, “Monitoring of TiSi2 formation on narrow polycrystalline silicon lines using raman spectroscopy,” IEEE Electron Device Letters, vol. 19, 171-173, 1998.
[31]盧天惠, “X光繞射與應用,” 滄海書局, 2002.
[32]林聖賢, 陳徹, 李迎龍, “固態化學基礎簡介(二)-X光晶體分析及晶體缺陷,” 滄海書局, 2004.
[33]林麗娟, “X光繞射原理及其應用,” 工業材料, vol. 86, 100-109, 1994.
[34]E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters, vol. 58, 2059-2062 1987.
[35]S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Physical Review Letters, vol. 58, 2486-2489 1987.
[36]K. M. Ho, C. T. Chart, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Physical Review Letters, vol. 65, 3152-3155 (1990).
[37]A. Taflove, and S. C. Hagness, “Computational electrodynamics: the finite-difference time-domain method: 2nd edition,” Artech House Publishers, 2000.
[38]J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations,” Physical Review Letters, vol. 69, 2772-2775 (1992).
[39]欒丕綱, 陳啟昌, “光子晶體-從蝴蝶翅膀到奈米光子學”, 五南圖書出版股份有限公司, 2005.
[40]F. Garcia-Santanaria, C. López, F. Mesegure, F. López-Tejeira, J. Sánchez-Dehesa, H. T. Miyazaki, “Opal-like photonic crystal with diamond lattice,” Applied Physics Letters, vol. 79, 2309-2311 (2001).
[41]Y. Fink, N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science, vol. 282, 1679-1682 (1998).
[42]M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, H. Yukawa, S. J. Choi, J. D. O’Brien, P. D. Dapkus, W. K. Marshall, “Two-Dimensional photonic crystal Mach-Zehnder interferometers,” Applied Physics Letters, vol 84, 460-462 (2004).
[43]X. Yu, S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Applied Physics Letters, vol 83, 3251-3253 (2003).
[44]李長綱, “電磁學與電磁波的理論與應用,” 鼎茂圖書出版股份有限公司, 2006.
[45]C. Hilsum, ”Infrared absorption of thin metal films,” Journal of the Optical Society of America, vol.44, 188-191 (1954).
[46]P. A. Silberg, ”Infrared absorption of three-layer films,” Journal of the Optical Society of America, vol. 47, 575-578 (1957).
[47]X. Meng, G. Gomard, O. E. Daif, E. Drouard, R. Orobtchouk, A. Kaminski, A. Fave, M. Lemiti, A. Abramov, P. R. Cabarrocas, C. Seassal, “Absorbing photonic crystals for silicon thin-film solar cells: Design, Fabrication and experimental investigation,” Solar Energy Materials & Solar cells, vol. 95, 532-538 (2011).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔