(3.230.143.40) 您好!臺灣時間:2021/04/19 04:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭學文
研究生(外文):Cheng,Hsueh,Wen
論文名稱:添加少量元素對Sb2Te3熱電材料性質影響之研究
論文名稱(外文):The Effects of Small Additions Elements on Properties of Sb2Te3 Thermoelectric Materials
指導教授:才有益
口試委員:才有益吳信賢陳剛毅
口試日期:2012-07-20
學位類別:碩士
校院名稱:高苑科技大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:42
中文關鍵詞:熱電
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
熱電材料是利用電能與熱能相互轉換的一種功能材料,由於熱電之設備具有無震動、無噪音、體積小、重量輕、耐用、無污染物質等優點,已成為人們研究之重要能源材料。衡量熱電材料的一個重要指標就是ZT值,ZT是材料之熱電優值(figure of merit),其定義為ZT = α2σT/ κ,其中α是西貝克係數(Seebeck coefficient),σ為材料之電導率(electrical conductivity),κ是熱導率(thermal conductivity),T是絕對溫度。所以好的熱電材料需具有大的α值,大的電導率,以及小的熱導率。本研究利用熔煉法製備中温型熱電材料Sb35Te60X5,X :Ag、Zn、Si,探討在熱電材料Sb2Te3合金中,添加少量元素5%Ag、5%Zn、5%Si (at%)對Sb2Te3之電阻率(electrical resistivity)、西貝克係數(Seebeck coefficient)、功率因數(power factor)之影響。實驗結果顯示,Sb2Te3之電阻率約為12.91 x10-3Ω•m、西貝克係數約為50x10-4V/K,及功率因數為1.936x10-3WK-2m-1,所有添加之元素都會提升Sb2Te3熱電材料之電阻率,添加Zn之Sb35Te60Zn5熱電材料提升最多,其電阻率為42.9x10-3Ω•m,而添加Si之Sb35Te60Si5熱電材料只稍為提升,其電阻率為15.9x10-3Ω•m。添加第三元素Ag、Zn、Si至Sb2Te3合金都會降低其西貝克係數,添加Zn及Si只稍為降低西貝克係數。純Sb2Te3合金之功率因數為1.936x10-3WK-2m-1,添加Si之Sb35Te60Si5熱電材料,其功率因數為1.006x 10-3 WK-2m-1,約為純Sb2Te3合金之功率因數的0.52,在未添加任何其他三種元素之純元素Sb2Te3的ZT值為1118 x10-5,而添加元素Sb35Te60Ag5顯示出ZT值為41x10-5沒有比純元素SbTe來得好,接下來添加元素Sb35Te60Zn5顯示出ZT值為73.7 x10-5有比前面添加元素Sb35Te60Ag5還要高,再添加元素Sb35Te60Si5如圖顯示ZT值為407.9 x10-5比較前面添加元素Sb35Te60Ag5、Sb35Te60Zn5來看Sb2Te3未添加元素所得到的ZT值比其他三種來得高出很多。由以上得知,添加Ag、Zn及Si 至Sb2Te3合金之熱電材料,並未明顯改善其熱電性質。
Thermoelectric materials is a function of electricity and thermal energy conversion materials, thermoelectric equipment has the advantage of no vibration, no noise, small size, light weight, durable, non-polluting substances, have become the people to study energy materials.The efficiency of thermoelectric conversion is evaluated by means of the thermoelectric figure of merit (ZT). The dimensionless ZT is defined as ZT =α2σT / κ, where α is the Seebeck coefficient, α= ΔV/ΔT, σ is the conductivity of the materials, κ is the thermal conductivity, and T is the absolute temperature. Therefore, the good thermoelectric materials should have a large value of α, a large electrical conductivity, and thermal conductivity. In this study, the medium temperature thermoelectric materials were prepared using the vacuum melting method. We have prepared a series of samples with composition Sb35Te60X5, X: Ag, Zn, and Si. Study the effects of a small amount of elements on properties of the Sb35Te60X5, such as electrical resistivity, the Seebeck coefficient, power factor. The experimental results show that the resistivity of Sb2Te3 is about 12.91 x10-3Ω • m, the Seebeck coefficient is about 50 x10-4V/K and the power factor is 1.936 x10-3WK-2m-1. Adding Ag, Zn, and Si elements can enhance the electrical resistivity of the Sb2Te3 alloys, as well as to reduce the Seebeck coefficient and power factor. The addition of Si of the Sb35Te60Si5thermoelectric materials is only slightly enhance the resistance was 15.9x10-3Ω • m. Add of Ag, Zn, Si to Sb2Te3 alloy will reduce the its Beaker coefficient, add Zn and Si only slightly lower Beaker coefficientThe power factor for the pure Sb2Te3 alloy 1.936x x10-3WK-2m-1, add the Si of Sb35Te60Si5 thermoelectric materials, the power factor of 1.006x x10-3WK-2m-1, about 0.52 of the power factor of the pure Sb2Te3 alloy. From the above that add Ag, Zn and Si into the Sb2Te3 thermoelectric material, did not significantly improve its thermoelectric properties
誌 謝 I
摘要 II
ABSTRACT III
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
第二章 理論基礎與文獻回顧 2
2.1熱電材料熱電轉換基礎理論 2
2.1.1 Seebeck 效應 2
2.1.2 Peltier 效應 4
2.1.3 Thomson 效應 5
2.1.4 熱電優值 6
2.2基礎原理 7
2.2.1 電阻率 7
2.2.2 熱傳導率 8
2.2.3 Seebeck 係數 9
2.3文獻回顧 11
2.3.1 熱電材料介紹 12
第三章 實驗方法與步驟 13
3.1實驗流程 13
3.2量測系統 14
3.2.1 電阻率量測方法 14
3.2.2 熱傳導率量測方法 15
3.2.3 Seebeck 係數量測方法 16
3.3顯微結構與成分分析 17
3.3.1 掃描式電子顯微鏡(SEM) 17
3.3.2 X-Ray 繞射分析(XRD) 17
3.3.3 能量分散光譜儀(EDS) 17
第四章 實驗結果與討論 18
4.1 X-Ray 的測量 18
4.1.1 XRD分析 19
4.1.2 SEM分析 20
4.1.3 EDS分析 24
4.2 電阻率 26
4.3 熱傳導率 27
4.4 Seebeck 係數的測量 28
4.5功率因數的量測 29
4.6熱電優值 30
第五章 結論 32
第六章 參考文獻 33
[1] Thermoelectric properties of hydrothermally synthesized and hot pressed n-type Bi2Te3 alloys with different contents of Te. Mater Sci Eng B,2005,117:119
[2] Su Taichao,Zhu Pinwen,Ma Hongan,et al. Electrical trans-port and thermoelectric properties of PbTe doped with Sb2Te3 prepared by high-pressure and high-temperature. J Alloys Comp,2006,422:328
[3] Hugh W Hillhouse﹐Mark T Tuominen﹒Modeling the ther-moelectric transporties of nanowires embedded in o-riented microporous and mesoporous. Microp Mesop Ma-ter﹐2001﹐47:39
[4] Dauscher A﹐Lenoir B﹐Boffoue O﹐et al. Thermoelectric films prepared by pulsed laser deposition. ALT01 interna-tional conference on advanced laser technologies. P roceed-ings of SPIE. 2002.4762:52
[5] Kanatzidis., D.-Y. C. M. G. Science 2000, 287, 1024.
[6] Rama Venkatasubramanian, Edward Siivola, Thomas Colpitts and Brooks O'Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit” Nature, Vol. 413, 2001, p.597.
[7] F. Levy, "Intercalated Layered Materials," (D. Reidel Publishing Company, London), 1979.
[8] R. Schollhorn, E. Sick, and A. Lerf, Mat. Res. Bull., 10, 1005 (1975).
[9] John C. Bass, Aleksander S. Kushch, Norbert B. Elsner, 20th International Conference on Thermoelectrics, 8-11 June 2001, Beijing.
[10] R. Scholhorn and H. Meyer, Mat. Res. Bull., 9, 1237 (1974).
[11] L.R. Testardi, P.J. Stiles,and E. Burstein, Solid State Communications,1, 28 (1963).
[12] B.C. Sales, Science, 295 (2002), pp. 1248-1249.
[13] A. D. Goleskaya, V. Sologub, and S. S. Shalyt, Sov. Phys.Semicond.,5, 416(1971).
[14] M. K. Zhitinskaya, V. I. Kaidanov, and V. P. Kondrt'ev, Sov. Phys.Semicond., 10, 1300 (1976).
[15] R. Scholhorn and H. Meyer, Mat. Res. Bull., 9, 1237 (1974).
[16] L.D. Hicks and M. S. Dresselhaus, Phys. Rev. B, 47, 12727 (1993).
[17] J.J. Ritter and P. Maruthamuth, Inorg. Chem., 34, 4278 (1995).
[18] I. A. Smirnov, E.V. Shadrichev, and V. A. Kutasov, Soviet Physic -Solid State, 11, 2681 (1970).
[19] T. E. Svechnikova, M. A. Korzhuev, N. M. Maksimova, P. P.Konstantinov, and G. T. Alekseeva, Semiconductors, 30, 609 (1996).
[20] 鄭時任, 中低溫梯度接合型熱電材料之研究, 國立東華大學電子工程研究所碩士論文,2009
[21] Seebeck, T. J., Methode, Platinatiegel auf ihr chemische.
[22] Thomson, W., An account of Carnot`s theory of the motive power of heat, Proc. R. Soc. Edinburgh, 16, 541, 1849
[23] Thomson, W., On a mechanical theory of thermo-electric currents, Philos. Mag. , [5] 3, 529, 1852.
[24] Thomson, W., Account of researches in thermo-electricity, Philos. Mag.[5], 8, 62, 1854.
[25] 周雅文,火花電漿燒結技術於熱電材料開發之應用, 工業材料雜誌287期,2010.11.
[26] 朱旭山,熱電發電技術及其應用方向,工業材料雜誌286期,2010.10.
[27] 許家展、黃振東、鍾秀瑩,中溫熱電材料研究與發展,工業材料雜誌286期,2010.10.
[28] 于薇伶、李文錦,溼式製程應用於鉍化碲系列熱電奈米晶體的製備,工業材料雜誌286期,2010.10.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔