跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 22:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俊霖
研究生(外文):Jun Lin Chen
論文名稱:氧化鉻-氧化鈰/γ-氧化鋁擔體觸媒應用於甲烷催化反應之研究‏
論文名稱(外文):Study on Catalytic Incineration of Methane Using Cr2O3-CeO2/γ-Al2O3 as the Catalyst
指導教授:王清輝
指導教授(外文):Ching-Huei Wang
口試委員:李豐祥陳春凉
口試日期:2012-06-19
學位類別:碩士
校院名稱:高苑科技大學
系所名稱:化工與生化工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:102
中文關鍵詞:甲烷燃燒Mars-Van KrevelenLangmuir-Hinshelwood
外文關鍵詞:Combustion of MethaneMars-Van KrevelenLangmuir-Hinshelwood
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本研究以臨濕含浸法及溶膠凝膠法製備成各種不同的觸媒,並以微分反應器來測得觸媒對甲烷催化燃燒的活性。由實驗結果顯示觸媒的活性金屬氧化物、擔體、金屬氧化物含量、空間速度、CH4濃度、金屬氧化物促進劑等都皆會影響到甲烷催化燃燒的活性。首先以六種不同的單金屬氧化物擔體觸媒(以Cr2O3、CuO、Fe2O3、NiO、MnO3、Co3O4為活性物質和Al2O3擔體作用)中,發現以Cr2O3∕γ-Al2O3觸媒對甲烷催化燃燒反應具有最佳活性。再將硝酸鉻溶液含浸於不同擔體上(γ-Al2O3,La2O3,TiO2,SiO2,CeO2,V2O5),製成六種Cr2O3/擔體之觸媒,結果發現以Cr2O3∕γ-Al2O3觸媒活性最佳。改變鉻含量,發現鉻含量為10wt%之Cr2O3∕γ-Al2O3觸媒具有最佳活性。添加在Cr2O3∕γ-Al2O3觸媒上之五種金屬氧化物促進劑(CeO2、La2O3、SrO、CuO和Fe2O3)中,以添加CeO2最能促進甲烷燃燒之效果,Ce添加量為4 wt%時效果最佳。穩定性測試結果顯示,Cr2O3- CeO2∕γ-Al2O3觸媒在475℃反應20小時,甲烷的轉化率為97%;在375℃反應20小時,甲烷的轉化率為37%。觸媒無論在高溫或低溫下都具有良好的穩定性。
將氧化鋁披覆於蜂巢狀陶瓷擔體上,再以含浸法在其上擔載活性物質,製備成Cr2O3-CeO2∕γ-Al2O3蜂巢狀擔體觸媒,並利用微分型反應器以Cr2O3-CeO2∕γ-Al2O3蜂巢狀擔體觸媒進行甲烷催化燃燒反應之動力學研究,針對Power-rate law、Langmuir-Hinshelwood(二種反應物分別吸附於相同及不相同的活性座上)及Mars-Van Krevelen三種模式探討其與甲烷燃燒反應數據符合的情況。由結果發現,Mars-Van Krevelen模式最適合描述甲烷燃燒燃燒反應之動力模式,其反應速率式為:
-r= (K_R K_O C_R C_O)/(αK_R C_R+K_O C_O )
KR = 6.25×104 exp(-58.1/RT),Ea = 58.1 KJ/mol
KO = 5.31×104 exp(-68.3/RT),Ea = 68.3 KJ/mol
α=2
上式中CR和CO各代表甲烷與氧氣之濃度

In this study, the incipient wetness impregnation and the sol-gel method were employed to prepare catalysts. The activities of the catalysts for catalytic incinerationof methane were measured by a packed-bed reactor. Experimental results indicate that the active species, the support, the metal content, the weight hourly space velocity (WHSV), the inlet CH4 concentration and promoter (metal oxide) are all important factors that affect efficacy of CH4 oxidation. Cr2O3∕-Al2O3was found to be the most active catalyst among six prepared supported single metal oxide catalysts (with Cr2O3, CuO、Fe2O3, NiO, MnO3, Co3O4 as the active species and -Al2O3 as the supports). -Al2O3 is the most suitable among the six tested supports (γ-Al2O3,La2O3,TiO2,SiO2,CeO2,V2O5). Furthermore, the optimal Cr content of Cr2O3∕-Al2O3 is 10 wt.%. To investigate the promoting effect, five different metal oxides (CeO2, La2O3, SrO, CuO and Fe2O3) were separately added to Cr2O3∕-Al2O3. The experiments reveal CeO2 as the most effective promoter and the optimal added amount as around 4 wt%. Stability of Cr2O3-CeO2∕-Al2O3 is good and not affected by the reaction temperature because the CH4 conversion is maintained at a nearly constant value (37% for 375℃ and 97% for 475℃) during the 20 hrs on stream time test.
γ-Al2O3 was coated to honeycomb support and used as the support to prepareCr2O3-CeO2∕γ-Al2O3 honeycomb support catalysts by impregnation method. A kinetic study on the catalytic incineration of methane over Cr2O3-CeO2∕γ-Al2O3 honeycomb support catalyst was carried out in a differential reactor. Power-rate law, Langmuir-Hinshelwood (CH4 and O2 adsorbed on the same kind of active sites; CH4 and O2 adsorbed on two different kinds of active sites) and Mars Van Krevelen models were used to analyze the results of the catalytic incineration of methane. The results show that the Mars Van Krevelen model is suitable for catalytic incineration of methane. The reaction rate can be expressed by:
-r= (K_R K_O C_R C_O)/(αK_R C_R+K_O C_O )
KR = 6.25×104 exp(-58.1/RT),Ea = 58.1 KJ/mol
KO = 5.31×104 exp(-68.3/RT),Ea = 68.3 KJ/mol
α=2
Where CR and CO are the concentrations of CH4 and O2 respectively.

總目錄

中文摘要 I
ABSTRACT III
致謝 V
總目錄 VI
表目錄 IX
圖目錄 X
第一章緒論 1
1-1前言 1
1-2 研究動機與目的 3
第二章文獻回顧 4
2-1 觸媒概論 4
2-2 催化燃燒氣體所使用的觸媒 6
2-2-1 觸媒載體的選擇與特性 6
2-2-2 觸媒的選擇與特性 9
2-3 蜂巢狀觸媒 10
2-3-1 蜂巢狀觸媒的形式 11
2-3-2 蜂巢狀陶瓷載體 11
2-3-3 蜂巢狀金屬載體 11
2-3-4 蜂巢狀觸媒的製備 11
2-3-5 蜂巢狀陶瓷載體之披覆方法 12
2-3-6 活性金屬擔載於氧化物蜂巢狀陶瓷擔體之方法 13
2-3-7 蜂巢狀觸媒之應用 13
2-3-7-1 傳統應用 13
2-3-7-2 新興應用 14
2-4 觸媒操作參數探討 15
2-4-1 操作溫度 15
2-4-2 空間流速 15
2-4-3 觸媒性質 15
2-4-4 氧氣濃度 16
2-4-5 鍛燒溫度 16
2-5 觸媒催化反應動力學之研究 19
2-5-1 Power-rate law模式 20
2-5-2 Langmuir-Hinshelwood模式吸附同類型的活性座上 20
2-5-3 Langmuir-Hinshelwood模式吸附不同類型的活性座上 20
2-5-4 Mars-Van Krevelen model模式 20
第三章實驗 22
3-1 藥品與材料 22
3-2 藥品與材料 23
3-3 觸媒製備 24
3-3-1 γ-Al2O3粉體觸媒製備 24
3-3-2 金屬氧化物∕γ-Al2O3觸媒之製備 25
3-3-3 Cr2O3-CeO2∕γ-Al2O3蜂巢狀陶瓷擔體觸媒製備 26
3-4 觸媒物理性質鑑定 30
3-4-1 X光繞射分析儀(XRD) 30
3-4-2 穿透式電子顯微鏡(TEM) 30
3-4-3 場發射掃描式電子顯微鏡(FE-SEM) 30
3-4-4 程溫還原分析(TPR) 31
3-4-5 甲烷轉化反應之活性測試 33
3-5 氧化鋁擔體之特性鑑定 36
第四章結果與討論 40
4-1 觸媒篩選 40
4-1-1 不同金屬氧化物擔體觸媒之效能 40
4-1-2 不同擔體對(Cr2O3)∕擔體觸媒活性之影響 40
4-1-3 不同鉻含量之效應 43
4-1-4 加入第二種金屬對觸媒活性影響 48
4-1-5 鈰添加量對Cr2O3∕γ-Al2O3觸媒活性影響 48
4-2 蜂巢狀與粉末狀之比較 54
4-3 Cr2O3-CeO2∕γ-Al2O3蜂巢狀觸媒穩定性評估 54
4-4 反應條件對觸媒活性的影響 58
4-5不同鍛燒溫度對觸媒轉化效率之影響 58
4-6 蜂巢狀觸媒進行甲烷燃燒之動力學研究 64
4-6-1 動力學模式之選用 64
4-6-2 反應物濃度對反應速率之影響 65
4-6-3 評估最佳動力學模式模式 68
4-6-4 Mars-Van Krevelen動力學參數求取 76
4-6-5 Mars-Van Krevelen模式預測值與實驗值之比較 76
第五章結論 82
參考文獻 84

表目錄

表1-1 為觸媒在氣渦輪機內部需具備的條件 2
表2-1 氧化鋁成分表 8
表2-2 氧化鋁物理性質表 9
表2-3 貴重金屬與一般金屬差異 10
表2-4 兩種不同披覆之優缺點 12
表2-5 目前工業上觸媒焚化所需用之操作溫度 17
表2-6 觸媒催化燃燒甲烷氣體所使用之觸媒及反應溫度 18
表2-7 不同鍛燒溫度對觸媒催化活性之影響 19
表3-1 本研究用為測試金屬氧化物而選用之金屬鹽類 25
表4-1 Mars-Van Krevelen模式之動力參數 80

圖目錄

圖2-1 在不同反應區域下孔洞性觸媒的濃度分布 5
圖3-1 γ-氧化鋁擔體粉體觸媒之製備流程圖 24
圖3-2 鉻-鈰∕γ-氧化鋁擔體觸媒之製備流程圖 28
圖3-3 蜂巢狀陶瓷鉻-鈰∕γ-氧化鋁擔體觸媒製備模擬示意圖 29
圖3-4 觸媒程溫還原系統裝置圖 32
圖3-5 觸媒催化甲烷反應裝置圖 34
圖3-6 石英管反應器 35
圖3-9 自製氧化鋁之TEM圖 39
圖3-10 自製氧化鋁之SEM圖 39
圖4-1 不同單金屬氧化物擔體觸媒對甲烷催化燃燒之轉化率與溫度關係圖 41
圖4-2 不同載體對對甲烷催化燃燒之轉化率與溫度關係圖 42
圖4-3 擔載不同Cr含量之Cr2O3∕γ-Al2O3擔體觸媒對甲烷催化燃燒之轉化率與溫度關係圖 45
圖4-4 不同鉻含量之Cr2O3∕γ-Al2O3擔體觸媒之XRD圖譜 46
圖4-5 不同鉻含量之Cr2O3∕γ-Al2O3擔體觸媒之H2-TPR圖譜 47
圖4-6 Cr2O3∕γ-Al2O3加入第二種金屬氧化物對觸媒活性之影響 50
圖4-8 添加不同鈰含量之Cr2O3∕γ-Al2O3擔體觸媒之XRD 52
圖4-9 添加不同鈰含量之Cr2O3∕γ-Al2O3擔體觸媒之H2-TPR圖譜 53
圖4-10 蜂巢狀與粉末狀之甲烷燃燒反應 56
圖4-11 Cr2O3-CeO2∕γ-Al2O3觸媒穩定性測試 57
圖4-12 不同空間流速(WHSV)對甲烷轉化效率之影響 60
圖4-13 不同甲烷濃度對轉化效率之影響 61
圖4-14 鍛燒溫度對觸媒活性之影響 62
圖4-15 鍛燒溫度對觸媒活性之影響 63
圖4-16 甲烷轉化率與甲烷濃度的關係圖(蜂巢狀) 66
圖4-17 甲烷濃度對反應速率之影響 67
圖4-18 ln(-r)對ln(CR)之關係圖 69
圖4-19 甲烷催化燃燒反應速率之Arrhenius關係圖 70
圖4-20 √(C_R/(-r))對C_R之關係圖 72
圖4-21 C_R/(-r)對C_R之關係圖 74
圖4-22 1/(-r)對1/C_R 之關係圖 77
圖4-23 甲烷燃燒反應之表面還原常數 78
圖4-24 甲烷燃燒反應之表面氧化常數 79
圖4-25 Mars-Van Krevelen模式-預測甲烷轉化與實驗值之比較 81


1.Anderson, D. N.,“Effect of Inlet Temperature on the Performance of a Catalytic Reactor”, Proceedings of the Third Workshop on Catalytic Combustion,EPA-600/7-79-038, 405-425, (1979).
2.Eguchi, K. and Arai, H., “Recent Advances in High Temperature Catalytic Combustion”, Catalysis Today, 29, 379-386, (1996).
3.Dalla, B., Ralph, A., “Catalytic Combustion Gas Turbine Systems: the Preferred Technology for Low Emissions Electric Power Production and Co-generation”, Catalysis Today, 5, 129-136, (1997).
4.Etemad, S., Karim, H., Smith, L. L., Pfefferle, W. C., “Advanced Technology Catalytic Combustor for High Temperature Ground Power Gas Turbine Applications”, Catalysis Today, 47, 305-313, (1999).
5.Groppi, G., Tronconi, E., Forzatti, P., “Investigations on Catalytic Combustors for Gas-Turbine Applications Through Mathematical-Model Analysis”, Applied Catalysis A: General, 138(2), 177-197, (1996).
6.Forzatti, P., Groppi, G., “Catalytic combustion for the production of energy”, Catalysis today, 54(1), 165-180, (1999).
7.李秉傑、邱宏明、王奕凱,「非均勻系催化原理與應用」,渤海堂文化公司 (1993)。
8.Eguchi, K. and Arai, H., “Recent Advanced in High Temperature Catalytic Combustion”, Catalysis Today, 29(1-4), 379-386, (1996).
9.Charles, N. S., “Heterogeneous Catalysis in Industrial Practice,” McGraw-Hill, 2nd.,(1996).
10.Choudhary, T., Banerjee, V. S., Choudhary, V. R., “Catalysts for combustion of methane and lower alkanes”, Applied Catalysis A: General, 234, 1-23, (2002).
11.蘇崇毅,「蜂巢狀波洛斯凱特觸媒用於合成氣燃燒反應之研究」,碩士論文,國立成功大學化學工程學系 (2007)。
12.林志恩,「添加不同沸石於金屬觸媒內進行碳氫化合物還原氮氧化物之研究」,碩士論文,私立朝陽科技大學(2004)。
13.張涵青,「表面結構對於CuSO4/Al2O3在甲烷直接偶合反應上的影響」,碩士論文,國立中山大學環境工程研究所 (2000)。
14.Sasaki, M., Hamada, H., Kintaichi, Y., Ito, T.,“Highly Selective Reduction of Nitrogen Oxides with Hydrocarbons over H-form Zeolite Catalysts in Oxygen-rich Atmospheres”, Applied Catalysis, 64. 11,(1990).
15.Mariscal, R., et al., “Support effects in Pt/TiO2-ZrO2 catalysts for NO reduction with CH4”, Catalysis Today, 75, 385-391, (2002).
16.Burch, R., “Low NOx options in catalytic combustion and emission control”, Catalysis Today, 35, 27-36, (1997).
17.Osment, H. E., “Active Aluminas as Catalyst Treatment of Automotive Exhaust Emissions”, Automot, Eng., No. 730276, (1973).
18.Boreskov, G. K., “Catalytic activation of dioxygen”, Catalytic Science and Technology, 3, 39, (1982).
19.Golodets, G.I., Elsevier, “Heterogeneous Catalytic Reactions InvolvingMolecular Oxygen”, Amsterdam, 437-469, (1983).
20.Lijing, M., Dong, Y., Yingxia, L., Shouli, B., Aifan, C., Ruizian, “Catalytic combustion properties of nanocomplex oxide for natural gas”, Progress in natural science, 15(11), 1053-1056, (2005).
21.胡興中,「觸媒原理與應用」,高立圖書有限公司 (1991)。
22.徐菁卿,「蜂巢狀奈米金屬氧化物觸媒催化以氫為還原劑之一氧化氮還原反應」,碩士論文,國立成功大學化學工程學系(2005)。
23.Campanati, M., Fornasari, G., Vaccari, A., “Fundamentals in the preparation of heterogeneous catalysts”, Catalysis Today, 77(4), 299-314, (2003).
24.Kolb, W.B., Papadimitriou,A.A., Cerro, R.L., Leavitt, D.D.,Summers, J.C.,“The ins and outs of coating monolithic structures”, Chem. Eng. Prog., 89(2), 61, (1993).
25.Vergunst, T., Kapteijn, F., Moulijn, J., “Monolithic catalysts-non-uniform active phase distribution by impregnation”, Applied Catalysis A:General, 213, 179-187, (2001).
26.Ronald, M. H., Suresh, G., Robert, J. F.“The Application Of Monoliths For Gas Phase Catalytic Reactions”, Chemical Engineering Journal, 82(1-3), 149-156, (2001).
27.Heck, R. M., Farrauto, R. J.,“Catalytic Air Pollution Control: Commercial Technology”, Wiley, 206, (1995).
28.Heck, R.M., Farrauto, R.J.,“The automobile catalyst”, CATTECH , 1, 117-124, (1997).
29.Chang, C. C., Weng, H. S., “Deep oxidation of toluene on perovskite catalyst”, Ind. Eng. Chem. Res, 32, No. 11, 2930-2933, (1993).
30.Windawi, H., Wyatt, M.,“Catalytic Destruction of Halogenated Volatile Organic Compounds”`, Platinum Metals Rev, 34, No. 4, 186-193, (1993).
31.林文川,「臭味控制技術的介紹」,台北國際環保暨能源展專刊-環保特刊 (1996)。
32.Snape, T. H., “Air Pollution Control and Design Handbook-catalyticIncineration”, Macel Dekerd Inc., New york, (1997).
33.Janbey, A., Clark, W., Noordally, E., Grimes, S., Tahir,S., “Noble metal catalysts for methane removal.”, Chemosphere, 52, 1041-1046, (2003).
34.Liotta, L. F., Deganello, G. Sannino, D., Gaudino, M. C., Ciambelli, P., Gialanella, S., “Influence of barium and cerium oxides on alumina supported Pd catalysts for hydrocarbon combustion”`, Applied catalysis, A: General, 229, 217-227, (2002).
35.Hoyle, N. D., Kumarasamy, P., Self, V.A., Sermon, P.A., Vong,M.S.W., “Catalysis of H2, CO and alkane oxidation-combustion over Pt/Silica catalysts: evidence of coupling and promotion”, Catalysis Today, 47, 45-49,(1999).
36.Leea, J. H., Trimma, D. L., Cant, N. W., “The catalytic combustion of methane and hydrogen sulphide”, Catalysis Today, 47, 353-357, (1999).
37.Artizzua, P., Garbowskia, E., Primeta, M., Yves, B., Jacques Saint-Just,“Catalyticcombustion of methane on aluminate-supported copper oxide”, Catalysis Today, 47, 83-93, (1999).
38.Ferr, D., Forni, L., “Methane combustion on some perovskite-like mixed oxides”, Applied Catalysis B: Environmental, 16, 119-126, (1998).
39.Ciambelli, P., Cimino, S., Rossi, S. D., Faticanti, M., Lisi, L., Minelli, G., Pettiti, I., Porta, P., Russo, G., Turco, M., “AMnO3(A=La, Nd, Sm) and Sm1-xSrxMnO3 perovskites as combustion catalysts: structural, redox and catalytic properties”,Applied catalysis, B: Environmental, 24, 243-253, (2000).
40.Song, K. S., Cui, H. X., Kim, S. D., Kang, S. K., “Catalytic combustion of CH4 and CO on La1-xMxMnO3perovskites”, Catalysis Today, 47, 155-160, (1999).
41.Garcia, R. M., Cruz, D. I., Falcón, H., Peña, M. A., Fierro, J. L. G., “Role of bulk and surface structures of La1-xSrxNiO3 perovskite-type oxides in methane combustion”, Applied Catalysis B: Environmental, 33, 45-55, (2001).
42.Belessi, V. C., Ladavos, A. K., Pomonis, P. J., “Methane combustion on La-Sr-Ce-Fe-O mixed oxides: bifunctional synergistic action of SrFeO3-x and CeOx phases”, Applied Catalysis B: Environmental, 31, 183-194, (2001).
43.Klvana, D.,Kirchnerova, J., “Synthesis and characterization of perovskite catalysts”, Solid State Ionics, 123, 307-317, (1999).
44.Wang, C.H., Chen, C.L., Weng, H.S., “Surface properties and catalytic performance of La1-xSrxFeO3perovskite-type oxides for methane combustion”, Chemosphere, 57, 1131-138, (2004).
45.Spinicci, R., Tofanari, A., Faticanti, M., Pettiti, I., Porta, P., “Hexane total oxidation on LaMO3 (M = Mn, Co, Fe) perovskite-type oxides”, Journal of Molecular Catalysis A: Chemical, 176, 247-252, (2001).
46.Kirchnerova1, J., Alifanti, M., Delmon, B., “Evidence of phase cooperation in the LaCoO3-CeO2-Co3O4catalytic system in relation to activity in methane combustion”,Applied Catalysis A: General, 231, 65-80, (2002).
47.Pengpanich, S., Meeyoo, V., Rirksomboon, T., Bunyakiat, K., “Catalytic oxidation of methane over CeO2-ZrO2 mixed oxide solid solution catalysts prepared via urea hydrolysis”, Applied Catalysis A: General, 234, 221-233, (2002).
48.顧洋、王大中、李嘉平,「甲胺氣體氧化反應之研究」,第七屆空氣污染控制技術研討會 (1990)。
49.Li, W.B., Chu, W.B., Zhuang, M., Hua, J., “Catalytic oxidation of toluene on Mn–containing mixed oxides prepared in reverse microemulsions”, Catalysis Today, 5, 205-209, (2004).
50.Sang,C. K., “The catalytic oxidation of aromatic hydrocarbons over supported metal oxide”, Journal of Hazardous Materials, B91, 285-299, (2002).
51.Huang, T. J., “Effect of Calcination Condition on Surface Properties of Copper/Alumina Catalysts”, J. of The Chin., Ch.E.21, No.5, (1990).
52.Hawkins, J. R., Wanke, S. E., “The Oxidation of ethylene over a supported platinum catalyst”,Canadian Journal of Chemical Engineering, 57, 621-626, (1979).
53.Prasad, R., Kennedy, L.A., Ruckenstein,E., “Catalytic Combustion”, Catalysis Reviews - Science and Engineering, 26, 1-58, (1984).
54.Chang, C. C., Weng, H. S., “Deep oxidation of toluene on perovskite catalyst”, Industrial & Engineering Chemistry Research, 32, 2930-2933, (1993).
55.Morgan, C. R., Carlson, D. W., Voltz, S. E., “Thermal response and emission breakthrough of platinum monolithic catalytic converters” SAE Preprints, n 730569, 13, (1973).
56.Spivey, J. J., “Complete catalytic oxidation of volatile organics”, Ind. Eng.Chem. Res, 26, 2165-2180, (1987).
57.Jaswal, I., Mann, R., Juusola, J., Downie, J., “Vapor-phase oxidation of benzene over a vanadium oxide catalyst”,Can J Chem Eng., 47, 284-7, (1969).
58.Fabien, O., Louis, B., Roger, A., “Methanation of carbon dioxide over nickel-based Ce0.72Zr0.28O2 mixed oxide catalysts prepared by sol-gel method”, Applied Catalysis A: General, 369, 90-96, (2009).
59.王清輝,「銅-鉬氧化物擔體觸媒應用於氧化分解二硫化二甲基之研究」,博士論文,國立成功大學化學工程學系 (1998)。
60.Shek, C. H., Lai, J. K. L., Gu, T. S., Lin,G. M.,“Transformation evolution and infrared absorption spectra of amorphous and crystalline nano-Al2O3 powders”, Nano Structured Mater., 8(5), 605-610, (1997).
61.陳信宏,「鍛燒溫度對無電鍍銅系列觸媒在一氧化碳氧化反應影響之研究」,碩士論文,國立台灣科技大學 (2000)。
62.Loof, P., Kasemo, B., Andersson, S., Frestan, A., “Influence of Ceriaon the Interaction of CO and NO with Highly Dispersed Pt and Rh”, J. Catal., 130, 181, (1991).
63.施經振,「含銅觸媒應用於NO-CO-O2反應之研究」,碩士論文,國立清華大學 (1995)。
64.Jaswal, I., Mann, R., Juusola, J., Downie, J., “The Vapor-phase oxidation of benzene over a vanadium oxide catalyst”,Can J Chem Eng, 47, 284-7, (1969).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊