跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 20:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江文傑
研究生(外文):Wun-Jie Jiang
論文名稱:聚乳酸/醋酸纖維素複合材料之製備及特性研究
論文名稱(外文):Preparation and Characterization of Polylactide/Cellulose Acetate Composites
指導教授:吳進三
指導教授(外文):Chin-San Wu
口試委員:葉正濤廖心慈顏福杉吳進三
口試委員(外文):Jen-Taut YehHsin-Tzu LiaoFu-San YenChin-San Wu
口試日期:2012-06-12
學位類別:碩士
校院名稱:高苑科技大學
系所名稱:化工與生化工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:101
中文關鍵詞:聚乳酸醋酸纖維素複合材料生物相容性生物分解性
外文關鍵詞:PolylactideCellulose acetateCompositesBiocompatibilityBiodegradability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:297
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
本研究以丙烯酸接枝聚乳酸當相容劑,並與醋酸纖維素混摻製備聚乳酸/醋酸纖維素複合材料,並對其組成之複合材料的生物相容性、表面型態、熱性質及機械性質進行了評估。結果顯示接枝丙烯酸之聚乳酸/醋酸纖維素複合材料之相容性及機械性質較佳。在吸水率測試方面中,發現隨著醋酸纖維素含量的增加,吸水率隨之提升;且結果又顯示接枝比未接枝丙烯酸複合材料較抗水率佳;這是由於接枝丙烯酸之聚乳酸的羧基和醋酸纖維素羥基反應而產生支鏈與交聯巨分子結構醋酸纖維素所致。並由土壤分解試驗發現,顯示其分解重量損失率大小為聚乳酸/醋酸纖維素複合材料>接枝丙烯酸之聚乳酸/醋酸纖維素複合材料>聚乳酸。在生物相容性試驗方面,是以人體皮膚的真皮成纖維細胞(FB)接種於接枝與未接枝丙烯酸之聚乳酸複合材料薄膜上,觀察其為傷口敷料的表徵特性及生物相容性。發現 FB隨時間變化的增生過程中,聚乳酸/醋酸纖維素薄膜的細胞增生率優於丙烯酸接枝聚乳酸/醋酸纖維素薄膜。而免疫螢光染色試驗圖中之FB皆為正常形態特徵。並發現FB培養第7天時,聚乳酸/醋酸纖維素系列FB的膠原蛋白量比普通培養盤之FB膠原蛋白量高了25%,且隨著醋酸纖維素含量由0 wt %至20 wt %之增加過程中,發現膠原蛋白含量明顯隨之提升;而接枝丙烯酸之聚乳酸/醋酸纖維素系列薄膜,其膠原蛋白之增加量較低於未接枝之聚乳酸/醋酸纖維素系列薄膜。由 SEM觀察得知,於聚乳酸/醋酸纖維素系列薄膜能有效促進FB分泌膠原蛋白,表示此薄膜具有優異的生物相容性。綜合上述結果分析,聚乳酸/醋酸纖維素複合材料具有良好的機械性質、生物相容性及生物分解性,在未來能根據不同使用功能調整配方,增加產品的效用。
The biocompatibility, morphology, and mechanical thermal properties of composite materials composed of maleic anhydride-grafted polylactide (PLA-g-AA) and cellulose acetate (CA) were evaluated. Composites containing maleic anhydride-grafted PLA (PLA-g-AA/CA) exhibited noticeably superior mechanical properties due to greater compatibility between the two components. The dispersion of CA in the PLA-g-AA matrix was highly homogeneous as a result of ester formation, and the consequent creation of branched and cross-linked macromolecules, between the carboxyl groups of PLA-g-AA and hydroxyl groups in CA. In a soil environment, the PLA/ CA composite has a higher value of biodegradation than the PLA-g-AA/CA and PLA. In the water test, the PLA/CA had higher values of water absorption than PLA-g-AA/CA. The human skin dermal fibroblasts (FBs) seeded on these two novel series membranes to verify the wound dressing characterization properties. With time-dependent course, the FBs proliferation demonstrated a better increasing performance on the series membranes of PLA/CA than PLA-g-AA/CA. The immunofluorescent staining illustrated FBs with normal morphological features. The collagen amount from FBs on the PLA/CA series was 25% higher than that seeded on regular culture-plates after 7 days incubation. With CA content from 0 to 20%, the collagen amount increased apparently and up to the position of CA 20%. Otherwise, with PLA-g-AA membranes, the collagen amount showed moderate stimulations. The SEM image presented secreted collagen from FBs on the PLA/CA membrane, indicating the biofunctional properties of these membranes. The above result analysis, this PLA-g-AA/CA composites has good mechanical properties , biocompatible and biodegradability in the future when use adjusts the formula according to the functionality, may increase the product utility.
中文摘要 I
英文摘要 III
致謝 V
目錄 VI
圖目錄 X
表目錄 XII
第一章 緒論 1
1.1前言 1
1.2研究目的與方法 4
第二章 文獻回顧 6
2.1生物可分解高分子複合材料 6
2.1.1生物可分解塑膠 6
2.1.2生物可分解複合材料 10
2.2聚乳酸簡介 12
2.2.1聚乳酸合成 16
2.2.2聚乳酸分解性質 18
2.3纖維素簡介 20
2.3.1醋酸纖維素素 25
2.4相容劑改質 27
2.5生物相容性 32
第三章 實驗藥品、儀器、方法 34
3.1 實驗藥品 34
3.2 實驗儀器 36
3.3 實驗流程 37
3.4生物相容性試驗流程 38
3.5材料製備 39
3.5.1製備聚乳酸接枝丙烯酸共聚物 39
3.5.2滴定法測定聚乳酸接枝丙烯酸共聚物接枝率 40
3.5.3 聚乳酸接枝丙烯酸/醋酸纖維素複合材料之製備 41
3.5.4複合材料之生物相容性試片製備 41
3.6細胞測試 43
3.6. 1細胞來源及培養條件 43
3.6.2細胞繼代培養 43
3.6.3細胞培養基配製 43
3.7材料分析鑑定與生物相容性測試 45
3.7.1 材料分析鑑定 45
3.7.2 生物相容性測試 50
第四章 結果與討論 55
4.1聚乳酸/醋酸纖維素複合材料之FTIR鑑定 55
4.2 聚乳酸/醋酸纖維素複合材料之NMR鑑定 57
4.3聚乳酸/醋酸纖維素複合材料機械性質分析 59
4.4聚乳酸/醋酸纖維素複合材料之微差掃瞄熱卡計分析 64
4.5聚乳酸 /醋酸纖維素複合材料之吸水率分析 67
4.6聚乳酸 /醋酸纖維素複合材料之生物裂解試驗 69
4.7聚乳酸/醋酸纖維素複合材料之生物相容性試驗 73
4.7.1 聚乳酸/醋酸纖維素複合材料之細胞毒性與增生測試 73
4.7.2 聚乳酸/醋酸纖維素複合材料之細胞膠原蛋白定量測試 75
第五章 結論 77
第六章 參考文獻 79

1.Kweow D. K., Cha D. S., Park H. J., Lim S. T., Journal of Applied Polymer Science, 2000, 78, 986.
2.Shen L., Haufe J., Patel M. K., Product overview and market projection of emerging bio-based plastics, 2009,3,163.
3.Unmar G., Mohee R. , Bioresource Technology, 2008, 99, 6738.
4.Liu L.; Yu J., Cheng L., Yang X., Polymer Degradation and Stability, 2009, 94, 90.
5.Wang K. H., Wu T. M., Shih Y. F., Huang, C. M., Polymer Engineering and Science, 2008, 48, 1833.
6.Singh S., Mohanty A. K., Sugie T., Takai Y., Hamada H., Composites Part A: Applied Science and Manufacturing, 2008, 39, 875.
7.Krzesinska M. J., Zachariasz J., Lachowski A. I., Bioresource Technology, 2009, 100, 1274.
8.Psomiadou E., Arvanitoyannis I., Biliaderis C. G., Ogawa H., Kawasak N., Carbohydrate Polymers,1997, 33, 227.
9.Bikiaris D., Prinos J., Perrier C., Panayiotu C., Polymer Degradation and Stability, 1997, 57, 313.
10.Kim H. S., Kim H. J., Polymer Degradation and Stability, 2008, 93, 1544.
11.Wu C. S., Journal of Polymer Science: Part A: Polymer Chemistry, 2003, 41, 3882.
12.Wu C. S., Journal of Applied Polymer Science, 2003, 89, 2888.
13.Lee S. and Lee J.W., Korea-Australia Rheology Journal, 2005, 17,71.
14.Park B. D., Balatineez J. J., Polymer Composites, 1997, 18,79.
15.Chtourou H., Riedl B., Ait-Kadi J., Reinforced Plastic and Composites, 1992, 11, 372.
16.Sain M. M., Balatineez J., Law S., Journal of Applied Polymer Science, 2000, 77, 260.
17.Wang K. H., Wu T. M., Shih Y. F., Huang C. M., Polymer Engineering and Science, 2008, 48, 1833.
18.Wu C. S., Journal of Controlled Release, 2008, 132, 42.
19.Robin J. J., Boyer C., Boutevin B., Loubat C., Polymer, 2008, 49, 4519.
20.Wu C. S., Polymer, 2005, 46, 147
21.Wu C. S., Journal of Applied Polymer Science, 2008, 109, 2128.
22.Wu C. S., Macromolecular Bioscience. 2005, 5, 321.
23.Mohanty A. K., Misra M., Hinrichsen G., Macromolecular Materials and Engineering, 2000, 276-277, 1.
24.Yoshito I., Hideto T., Macromolecular Rapid Communications, 2000, 21, 117.
25.Sorrentino A., Gorrasi G., Vittoria V., Trends in Food Science & Technology, 2007, 18, 84.
26.Zhang X., Gozukara Y., Sangwan P., Gao D., Bateman S., Polymer Degradation and Stability, 2010, 95, 2309.
27.Janhom S., Watanesk R., Watanesk S., Griffiths P., Arquero O. A., Naksata W., Dyes and Pigments, 2006, 71, 188.
28.Qiang Z., Jian T., Richard C. M. Y., Albert C. K. M., Robert K. Y. L., Cunjiang S., Polymer Degradation and Stability, 2008, 93, 1571.
29.Alireza A., Amir N., Waste Management, 2010, 30, 680.
30.Amir N., Alireza A., Bioresource Technology, 2010, 101, 2525.
31.Chiellini E., Cinelli P., Solaro R., Laus M., Journal of Applied Polymer Science, 2004, 92, 426.
32.Wu K. H., Wu T. M., Shin Y. F., Huang C. M., Polymer Engineering and Science, 2008, 48, 1833.
33.Zhao Q., Tao J., Richard C. M. Y., Albert C. K. M., Robert K.Y. L. , Song C., Polymer Degradation and Stability, 2008, 93, 1571.
34.Nyambo C., Mohanty A. K., Misra M., Biomacromolecules, 2010, 1, 1654.
35.Mohanty S., Nayak S. K., Polymer Composites, 2010, 31, 1194.
36.Yamashita F., Bilck A. P., Grossmann M. V. E., Polymer Testing, 2010, 29 , 471 .
37.Bastarrachea L., Dhawan S., Sablani S. S., Mah J. H., Kang D. H., Zhang J., Tang J., Journal of Food Engineering, 2010, 100, 93.
38.Herrera R, Franco L, Rodrıguez-Galan L, Puiggalı J., J Polym Sci, 2002, 40, 4141.
39.Zhiling W., Enju W., Shuxiang Z., Zheng W., Yiping R., Industrial Crops and Products, 2009, 29, 133.
40.Ioannis S. A., Persefoni T., International Journal of Food Science & Technology, 2008, 43, 958.
41.Van de Velde K., Kiekens P., Polymer Testing, 2002 , 21, 433.
42.尤浚達,工研院 IEK-ITIS 計畫,生物可分解性高分子-聚乳酸之應用與發展潛力評估,2003,3,1。
43.李家宏、陳忠吾,財團法人塑膠工業技術發展中心出版,「塑膠百年特刊」, 2008。
44.Liu H., Zhang J., Journal of Polymer Science Part B: Polymer Physics, 2011, 49, 1051.
45.Ljungberg N., Andersson T., Wesslén B., Journal of Applied Polymer Science, 2003, 88, 3239.
46.Ljungberg N., Wesslén B., Journal of Applied Polymer Science, 2002, 86, 1227.
47.Murariu M., Ferreira A. D. S., Alexandre M., Dubois P., Polymers for Advanced Technologies, 2008, 19, 636.
48.Martino V. P., Jiménez A., Ruseckaite R. A., Journal of Applied Polymer Science, 2009, 112, 2010.
49.Jia Z., Tan J., Han C., Yang Y., Dong L., Journal of Applied Polymer Science, 2009, 114, 1105.
50.Qi R., Luo M., Huang M., Journal of Applied Polymer Science, 2011, 120, 2699.
51.Hong H., Wei J., Yuan Y., Chen F. P., Wang J., Qu X., Liu C. S., Journal of Applied Polymer Science, 2011, 121, 855.
52.Lunt J., Polymer Degradation and Stability, 1998, 59, 145.
53.Holland S. J., Tighe B. J., Gould P. L., J. Control Release, 1986, 4, 155.
54.Fukuzaki H., Yoshida M., Kumakura M., Polymer, 1990, 31, 2006
55.Unmar G., Mohee R., Bioresource Technology, 2008, 99, 6738.
56.簡宣裕、張明暉、劉禎祺,木質纖維素產生能源方法之探討,2007,1,103。
57.李吉祥、楊致行,Chemistry December,2007,65,397。
58.Panthapulakkal S., Zereshkian A., Sain M., Bioresource Technology., 2006, 97, 265.
59.Lee S. H., Wang S.,Composites Part A: Applied Science and Manufacturing, 2006,37, 80.
60.儲咏梅、王琪,竹原纖維織物芯吸效應的測試研究,2008,2,1。
61.Baiardo M, Zini E, Scandola M., Composites Part A: Applied Science and Manufacturing, 2004 , 35, 703.
62.Rao K. M. M., Rao K. M., Prasad A. V. R., Mater Design, 2010, 31, 508.
63.Shibata M., Oyamada S., Kobayashi S. I., Yaginuma D., Journal of Applied Polymer Science, 2004, 92, 3857.
64.Pothan L. A., Oommen Z., Thomas S., Composites Science Technology, 2003, 63, 283.
65.Kalia S., Kaith B. S., Kaur I., Polymer Engineering and Science, 2009, 49, 1253.
66.Chen C. W., Su M. H., Wang C. H., Asia-Pacific Biochemical Engineering Conference., 2007 , 49.
67.Ma X. F., Yu J. G., Kennedy J. F., Carbohydrate Polymers, 2005, 62, 19.
68.Ku T. H., Lin C. A., Journal of Polymer Research, 2005, 12, 23.
69.Shanks R. A., Hodzic A., Wong S., Journal of Applied Polymer Science, 2004, 91, 2114.
70.Suflet D. M., Chitanu G. C., Popa V. I., Reactive and Functional Polymers., 2006, 66 , 1240.
71.Zhang K., Peschel D., Klinger T., Gebauer K., Groth T., Fischer S., Carbohydrate Polymers, 2010, 82, 92.
72.Joseph P. V., Mathew G., Joseph K., Groeninckx G., Thomas S., Composites Part A: Applied Science and Manufacturing, 2003, 34, 275.
73.Wu C. S., Macromolecular Bioscience , 2008, 8, 560.
74.Kalia S., Kaith B. S., Kaur I., Polymer Engineering and Science, 2009, 49, 1253.
75.Graupner N., Herrmann A. S., Müssig J., Composites Part A: Applied Science and Manufacturing, 2009, 40, 810.
76.Hameed N., Guo Q., Carbohydrate Polymers, 2009, 78, 999.
77.Arkhangelsky E., Goren U., Gitis V., Desalination and Water Treatment, 2008, 223, 97.
78.Cao Y., Wu J., Meng T., Zhang J., He J., Li H., Zhang Y., Carbohydrate Polymers, 2007, 69, 665.
79.Son W. K., Youk J. H., Park W. H., Carbohydrate Polymers, 2006, 65, 430.
80.Kumar R. N., Po P. L., Rozman H. D., Carbohydrate Polymers,2006, 64, 112.
81.George J., Ramana K. V., Sabapathy S. N., Jagannath J. H., Bawa A. S., International Journal of Biological Macromolecules., 2005, 37, 189.
82.王雲平、王金煌、陳志成,生物分解性塑膠的世界市場展望,2008, 5,11。
83.蘇明德,科學發展,2010,448,64。
84.姚元婕、吳易凡,分解性塑膠產業與技術發展趨勢,2006,1,7。
85.Wong S., Shanks R., Hodzic A. Composites Science and Technology 2004, 64, 1321.
86.Corrales F., Vilaseca F., Llop M., Girones J., Mendez J. A., Mutj P., Journal of Hazardous Materials, 2007, 144, 730.
87.Kim H. S., Lee B. H., Choi S. W., Kim S., Kim H. J., Composites Part A: Applied Science and Manufacturing, 2007, 38, 1473.
88.Djomo H., Colmenares R., Meyer G. C., European Polymer Journal , 1981, 17, 521.
89.Wu C. S., Polymer Degradation and Stability, 2003, 80, 127.
90.Mansour O. Y., Nagaty A., Progress in Polymer Science, 1985, 11, 91.
91.Markham R. L., Advances in Polymer Technology, 1990, 10, 231.
92.John J., Bhattacharya M., Polymer International, 1999, 48, 1165.
93.Shia D., Yanga J., Yaoa Z., Wanga Y., Huanga H., Jinga W., Yina J., Costa G., Polymer, 2001, 42, 5549.
94.Josepha P. V., Rabello M. S., Mattosoc L. H. C., Joseph K., Thomas S., Composites Science and Technology, 2002, 62, 1357.
95.Wong S., Shanks R., Hodzic A., Composites Science and Technology, 2004, 64, 1321.
96.Arbelaiz A., Fernández B., Valea A., Mondragon I., Carbohydrate Polymers, 2006, 64, 224.
97.Pascente C., Márquez L., Balsamo V., Müller A. J., Journal of Applied Polymer Science, 2008, 109, 4089.
98.Wu C. S., Polymer Degradation and Stability, 2009, 94, 1076.
99.Xie Y., Hill C. A. S., Xiao Z., Militz H., Mai C., Composites: Part A, 2010, 41, 806.
100.Jou C. H., Yuan L., Lin S. M., Hwang M. C., Chou W. L., Yu D. G., Yang M. C., Journal of Applied Polymer Science , 2007, 104, 220.
101.Jung B. O., Na J., Kim C. H., Journal of Industrial and Engineering Chemistry, 2007, 13, 772.
102.Keong L. C., Halim A.S., International Journal of Molecular Sciences, 2009, 10, 1300.
103.Na J., Kang C. M., Kim J., Kim S., Kim C. H., Molecular & Cellular Toxicology, 2007, 3, 70.
104.Papageorgiou G. Z., Bikiaris D. N., Macromolecular Chemistry and Physics , 2009, 210, 1408.
105.Jao W. C., Yang M. C., Lin C. H., Hsu C. C., Polymers for Advanced Technologies , 2011.(in press)
106.Liu G. Y., Lv L. P., Chen C. J., Hu X. F., Ji J., Macromolecular Chemistry and Physics, 2011, 212, 643.
107.Shafieyan Y., Sharifi S., Imani M., Shokrgozar M. A., Aboudzadeh N. and Atai M., Polymers for Advanced Technologies, 2011, 22, 2182.
108.Zaytseva-Zotova D., Balysheva V., Tsoy A., Drozdova M., Akopova T., Vladimirov L., Chevalot I., Marc A., Goergen J. L., Markvicheva E., Advanced Engineering Materials, 2011, 13,493.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top