跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 07:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許政鴻
研究生(外文):Jeng-Hung Shiu
論文名稱:非均勻系觸媒陰離子樹脂催化生產生質柴油及其反應機制之研究
論文名稱(外文):Heterogeneous catalysts system by anion exchange resins for biodiesel production and reaction mechanisms
指導教授:楊木火
指導教授(外文):Mu-Hoe Yang
口試委員:何宗漢廖渭銅
口試日期:2012-06-15
學位類別:碩士
校院名稱:高苑科技大學
系所名稱:化工與生化工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:121
中文關鍵詞:生質柴油陰離子樹脂轉酯化非均勻系觸媒
外文關鍵詞:biodieselanion-exchange resintransesterificationnon-homogeneous catalyst
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
在一般的轉酯化反應中,可透過均勻系及非均勻系觸媒進行催化反應,均勻系觸媒包含了鹼及酸,而在過去的文獻中指出最常用的為鹼觸媒如氫氧化物、甲醇鈉; 但在鹼製程中,雖然有反應迅速之優點但卻有易皂化的缺點,反之酸製程則有反應緩慢的缺點。而在非均勻系觸媒製程中,則需要較為嚴苛之反應條件,雖然其轉酯率及反應時間尚不及鹼觸媒製程;但其反應過程中,中和了其中的不飽和脂肪酸,故可避免皂化反應之發生。由於反應中作為觸媒使用之離子樹脂可進行回收再生,故為一綠色製程,期盼此為一產製生質柴油之另一方案。

在本研究中,以陰離子交換樹脂(Amberlyst A-21、Ion exchanger III)作為非均勻系觸媒,透過大豆油和甲醇作為原料以批式攪拌反應設備進行轉酯化反應,進而產製生質柴油,並探討其製程及反應模式。透過實驗探討其油醇比(1:1~1:6)、反應溫度(20~60℃)、攪拌速率(200~600rpm)、離子樹脂添加量(4.3~21.7wt%)及其再生使用性(0~4次)對生質柴油轉化率和反應時間之關係,以求得該反應之最適化條件; 實驗結果發現油醇比為1:5、反應溫度為50℃、離子樹脂的添加量為13.0wt%、攪拌速率為400rpm時,為本實驗之最佳化條件。本研究也同時探討了反應過程中所進行的反應機制,並以動力學模型描述陰離子樹脂作為觸媒反應之行為,實驗結果與該理論預測結果相當接近。

In general, transesterification reaction can produce in homogeneous system or through the non-homogeneous for catalytic systems, the homogeneous system such as containing alkali or acid catalysts. In the past literature, the most commonly used as base catalysts such like hydroxide, sodium methoxide. However, in alkali manufacturing process, although the rapid response of the advantages, but it has shortcomings of easy saponification, whereas acid processes has disadvantages of slow response time. When in the process of non-homogeneous for catalytic system, required more stringent reaction conditions; although the rate of transesterification reaction time is still less than in the alkali catalyst process, but in this reaction, it’s neutralize the unsaturated fatty acids that can avoid saponification reaction occurs. Due to the use of ion exchange resin as catalyst can be recycled, it is a green process, looking forward to this for the another production system for biodiesel production.

In this study, anion-exchange resin (Amberlyst A-21、Ion exchanger III) as the catalyst for soybean oil and methanol as raw materials for transesterification reaction in the stirred batch reactor, thus producing biodiesel; and to explore the process and the reaction dynamics for biodiesel. Also explore its oil-alcohol ratio (1:1~1:6), reaction temperature (20~60℃), stirring rate (200~600rpm), addition of ion exchange resin (4.3~21.7wt%)and the use of its renewable (0~4times) for the relation between biodiesel conversion rate and reaction time, in order to achieve optimization of the reaction conditions. From the experimental results found that when set oil-alcohol ratio (1:5)、reaction temperature (50℃) 、stirring rate(400rpm) 、ion exchange resin(13.0wt%) was optimization of the reaction conditions. This study also discusses the mechanism in the reaction, and the kinetic model to describe the behavior of anion-exchange resin as catalyst; the results are very close to the experimental results with theoretical predictions.

目錄
摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 X
表目錄 XII
第一章 緒論 1
1.1前言 1
1.2 研究動機與目的 2
第二章 文獻回顧 4
2-1生質能源 4
2-1-1生質柴油簡介 4
2-1-2生質柴油之特性 6
2-2生質柴油原料 9
2-2-1動、植物油簡介 9
2-2-2動、植物油中所含脂肪酸 11
2-3 植物油之改質 15
2-3-1 稀釋 (Dilution) 16
2-3-2 微乳化 (Microemulsion) 17
2-3-3 熱裂解 (Pyrolysis) 18
2-3-4 轉酯化 (Transesterification) 19
2-4產製生質柴油之轉酯化反應 20
2-4-1鹼製程 21
2-4-2酸製程 22
2-4-3酵素製程 23
2-4-4 超臨界製程 24
2-4-5非均相催化製程 25
2-5 非勻相催化機制 27
2-5-1 物理吸附 27
2-5-2 化學吸附 28
2-5-3 離子吸附 29
2-6離子交換樹脂 31
2-6-1離子交換樹脂簡介 31
2-6-2離子交換樹脂之特性原理 35
2-6-3離子交換樹脂機制 37
2-6-3離子交換樹脂操作 39
第三章 實驗材料與方法 41
3-1實驗材料 41
3-2 實驗設備 42
3-3實驗流程圖 43
3-4 實驗步驟 44
3-4-1 原料油(大豆油)前處理 44
3-4-2 觸媒(陰離子交換樹脂)前處理 44
3-4-3 以批式攪拌反應設備進行製備生質柴油 44
3-4-4 生質柴油精製處理 45
3-4-5 觸媒(陰離子交換樹脂)再生處理 45
3-4-6 計算生質柴油轉化率 46
3-4-7反應模式之動力學討論 46
第四章 實驗結果與討論 47
4-1不同操作變因對生質柴油轉化率之影響 47
4-1-1 油醇比對反應性的影響 47
4-1-2 離子樹脂添加量對反應性之影響 51
4-1-3反應溫度對反應性之影響 54
4-1-4 攪拌速率對反應性之影響 57
4-2觸媒再生使用對生質柴油轉化率之影響 61
第五章 反應模式之動力學討論 64
5-1 反應動力學基礎 64
5-2 反應速率常數 65
5-3 生質柴油反應動力學研究 66
5-4 陰離子樹脂吸附動力學研究 77
第六章 結論與展望 98
參考文獻 100


圖目錄
圖 2-1 飽和脂肪酸甲酯結構 12
圖2-2 不飽和脂肪酸甲酯結構 13
圖2-3 轉酯化反應 20
圖2-4 游離脂肪酸在水中與鹼反應生成皂化物 21
圖2-5 磺酸化反應製備強酸型陽離子交換樹脂 32
圖2-6 強鹼型陰離子交換樹脂Ⅰ型、Ⅱ型 34
圖2-7 螯合樹脂吸附重金屬的反應 35
圖2-8陽離子交換樹脂之構造模型圖 36
圖2-9 離子交換樹脂之質量傳送機制 38
圖3-1 實驗流程圖 43
圖4-1-1 A油醇比對生質柴油轉化率之影響 49
圖4-1-1 B油醇比對生質柴油轉化率之影響 50
圖4-1-2 A 離子樹脂添加量對生質柴油轉化率之影響 52
圖4-1-2 B 離子樹脂添加量對生質柴油轉化率之影響 53
圖4-1-3 A 反應溫度對生質柴油轉化率之影響 55
圖4-1-3 B 反應溫度對生質柴油轉化率之影響 56
圖4-1-4 A 攪拌速率對生質柴油轉化率之影響 59
圖4-1-4 B 攪拌速率對生質柴油轉化率之影響 60
圖4-2 A 觸媒再生使用對生質柴油轉化率之影響 62
圖4-2 B 觸媒再生使用對生質柴油轉化率之影響 63
圖5-3 A 三酸甘油酯(TG)與甲醇(A)反應位向圖 75
圖5-3 B 反應溫度與速率常數變化關係 76
圖5-4 A (上) 不同觸媒添加量對轉化率與溫度變化關係 86
圖5-4 B (下) 不同觸媒添加量對轉化率與溫度變化關係 86
圖5-4 C 觸媒(Ion exchanger III)添加量對反應速率與生成物濃度關係 88
圖5-4 D 觸媒(Amberlyst A-21)添加量對反應速率與生成物濃度關係 89
圖5-4 E 不同溫度下(Ion exchanger III)對反應速率與生成物濃度關係 90
圖5-4 F 不同溫度下(Amberlyst A-21)對反應速率與生成物濃度關係 91
圖5-4 G 由觸媒添加量預測吸附平衡常數之值(Ion exchanger III) 93
圖5-4 H由觸媒添加量預測吸附速率常數之值(Ion exchanger III) 94
圖5-4 I 由觸媒添加量預測吸附平衡常數之值(Amberlyst A-21) 96
圖5-4 J 由觸媒添加量預測吸附速率常數之值(Amberlyst A-21) 97


表目錄
表2-1 歐洲各國生質柴油之生產量 5
表2-2 生質柴油與石化柴油廢氣排放比較 6
表2-3 生質柴油和常規柴油的特性之比較 7
表2-4 生質柴油與石化柴油各項評比 8
表2-5 動、植物性油品碳數組成 10
表2-6 不同脂肪酸甲酯的物理特性 11
表2-7 各油品中主要游離脂肪酸 14
表2-8 植物油直接使用或稀釋摻合之優缺點比較 16
表2-9 物理吸附及化學吸附之差異比較 30
表3-1 A 實驗藥品 41
表3-1 B 陰離子交換樹脂性質 41
表3-2 實驗儀器設備 42
表4-1-1 A 油醇比對生質柴油轉化率之影響 49
表4-1-1 B 油醇比對生質柴油轉化率之影響 50
表4-1-2 A 離子樹脂添加量對生質柴油轉化率之影響 52
表4-1-2 B 離子樹脂添加量對生質柴油轉化率之影響 53
表4-1-3 A 反應溫度對生質柴油轉化率之影響 55
表4-1-3 B 反應溫度對生質柴油轉化率之影響 56
表4-1-4 A 攪拌速率對生質柴油轉化率之影響 59
表4-1-4 B 攪拌速率對生質柴油轉化率之影響 60
表4-2 A 觸媒再生使用對生質柴油轉化率之影響 62
表4-2 B 觸媒再生使用對生質柴油轉化率之影響 63
表5-3 A 反應過程中各速率常數與溫度關係 74
表5-3 B 反應溫度與速率常數變化關係 76
表5-4 A 觸媒(Ion exchanger III)添加量對轉化率與溫度變化關係 84
表5-4 B 觸媒(Amberlyst A-21)添加量對轉化率與溫度變化關係 85
表5-4 C 觸媒(Ion exchanger III)添加量對反應速率與生成物濃度關係 88
表5-4 D 觸媒(Amberlyst A-21)添加量對反應速率與生成物濃度關係 89
表5-4 E 不同溫度下(Ion exchanger III)對反應速率與生成物濃度關係 90
表5-4 F 不同溫度下(Amberlyst A-21)對反應速率與生成物濃度關係 91
表5-4 G 觸媒添加量對速率常數與吸附平衡常數關係(Ion exchanger III) 92
表5-4 H 不同反應溫度對速率常數與吸附平衡常數關係(Ion exchanger III) 92
表5-4 I 由觸媒添加量預測吸附平衡常數之值(Ion exchanger III) 93
表5-4 J由觸媒添加量預測吸附速率常數之值(Ion exchanger III) 94
表5-4 K 觸媒添加量對速率常數與吸附平衡常數關係(Amberlyst A-21) 95
表5-4 L 不同反應溫度對速率常數與吸附平衡常數關係(Amberlyst A-21) 95
表5-4 M 由觸媒添加量預測吸附平衡常數之值(Amberlyst A-21) 96
表5-4 N 由觸媒添加量預測吸附速率常數之值(Amberlyst A-21) 97


1.謝志誠 (2007) : 生質柴油之技術與文獻探討。
2.謝志強 (2007) : 歐洲生質柴油發展勢態,ITIS 智網。
3.林忠亮 (2001): 生質柴油之製程發展與應用,石油季刊,第四十二卷,第一期: 49-59。
4.周桂蘭 (2001) : 綠色能源-生質柴油國際發展現況,能源季刊,第三十一卷,第一期: 99-108。
5.陳志威 (2001): 將廢油變黃金-淺談生化柴油的發展與應用,生物資源生物技術,第三卷,第三期: 10-16。
6.柯清水 (1992) : 石油化學概論,正文書局, 161-170。
7.陳介武 (2000): Biodiesel Developments and Trends,拯救地球環境系列報導,USSEC。
8.李昌珠、蔣麗娟、程樹棋 (2007): 生物柴油-綠色能源,化學工業出版社, 8-9。
9.周桂蘭、王振諧、張村品、吳榮華、李宏台 (2001): 「綠色能源-生質柴油國際發展現況」,能源季刊,第三十一卷,第一期: 99-108。
10.Kitakawa NS, Honda H, Kuribayashi H, Toda T, Fukumura T, Yonemoto T.(2007), Biodiesel production using anionic ion exchange resin as heterogeneous catalyst. Biores Technol; 98(2):416–21.
11.M. Kim, S. O. Salley, and K.Y.S.Ng*(2008), Transesterification of Glycerides Using a Heterogeneous Resin Catalyst Combined with a Homogeneous Catalyst.
12.Sanz MT., Murga R., Beltran S., Cabezas JL., Coca J.(2002), Autocatalyzed and ion-exchange-resin-catalyzed esterification kinetics of lactic acid with methanol, Industrial and Engineering Chemistry Research, 41, 512-517.
13.Peterson, G.R., Scarrah, W.P.(1984), Rapeseed oil transesterification by heterogeneous catalysis. J. Am. Oil Chem. Soc. 61 (10), 1593–1597.
14.Arumugam Sivasamy, Kien Yoo Cheah, Paolo Fornasiero, Francis Kemausuor, Sergey Zinoviev, and Stanislav Miertus* (2008), Catalytic Applications in the Production of Biodiesel from Vegetable Oils.
15.J.M. Marchetti *, A.F. Errazu.(2008), Comparison of different heterogeneous catalysts and different alcohols for the esterification reaction of oleic acid.
16.Schuchardt, U., Vargas, R.M., Gelbard, G.(1996), Transesterification of soybean oil catalyzed by alkylguanidines heterogenized on different substituted polystyrenes. J. Mol. Catal. A: Chem. 109 (1), 37–44.
17.Marchetti JM, Miguel VU, Errazu AF.(2007), Heterogeneous esterification of oil with high amount of free fatty acids. Fuel;86:906–10.
18.Yadav GD, Thathagar MB.(2002), Esterification of maleic acid with ethanol over cation-exchange resin catalyst. React Funct Polym ; 52:99–110.
19.Peterson, C.L., Feldman, M., Korus, R., Auld, D.L.(1991), Batch type transesterification process for winter rape oil. Appl. Eng. Agric. 7(6), 711–716.
20.Gemma Vicente, Mercedes Martinez, Jose Aracil * (2004), Integrated biodiesel production: a comparison of different homogeneous catalysts systems.
21.Pasias S., Barakos N., Alexopoulos C., Papayannakos N.(2006), Heterogeneously catalyzed esterification of FFAs in vegetable oils, Chemical Engineering and Technology, 29, 1365-1371.
22.Gryglewicz, S.(1999), Rapeseed oil methyl esters preparation using heterogeneous catalysts. Bioresour. Technol. 70 (3), 249–253.
23.Maryam Kolyaei(2010), Optimization of biodiesel production of fatty acid esterification using ion exchange resins.
24.Hak-Joo Kima, Bo-Seung Kanga, Min-Ju Kima, Young Moo Parka,Deog-Keun Kimb, Jin-Suk Leeb, Kwan-Young Leea,∗, Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst.
25.Freedman B., Pryde E.H., Mounts T.L.(1984), Variables affects the yields of fatty esters from transesterified vegetable oils, Journal of the American Oil Chemists Society, Vol. 61, pp.1638-1643.
26.Bunyakiat K, Makmee S, Sawangkeaw R, Ngamprasertsih S.(2006), Continuous production of biodiesel via transesterification from vegetable oils in supercritical methanol. Energ Fuel;20:812–7.
27.Zullaikah S, Lai CC, Vali SR, Ju YH.(2005), A two step acid-catalyzed process for the production of biodiesel from rice bran oil. Biores Technol;96:1889–96.
28.Berrious M., Siles J., Martin MA.(2007), A kinetic study of esterification of free fatty acid (FFA) in sunflower oil, Fuel, 86, 2383-2388.
29.Bart HJ., Reidestschlager J., Schatka K., Lehmann A.(1994), Kinetics of esterification of levulinic acid with n-butanol by homogeneous catalyst,Industrial and Engineering Chemistry Research, 33, 21-25.
30.Jaeger, K. E. and M. T. Reetz.(1998), Microbial lipases form versatile tools for biotechnology. Trends in Biotechnology 16(9): 396-403.
31.Kusdiana D, Saka S.(2004), Two step preparation for catalyst free biodiesel fuel production. Appl Biochem Biotech ;113–116:781–91.
32.Demirbas A.(2005), Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods, Progress in Energy and Combustion Science, 31, 466-487.
33.Goto S., Tagawa T., Yusoff A.(1991), Kinetics of esterification of palmitic acid with isobutyl alcohol, International Journal of Chemical Kinetics, 23, 17-26.
34.Lachowska M., Grzesik M., Skrzypek J.(2003), Kinetics of the esterification of levulinic acid with n-hexanol and n-decanol in the presence of sulfuric acid,INZYNIERIA CHEMICZNA I PROCESOWA, 24, 441-448.
35.Vicente G., Martinez M., Aracil J.(2004), Integrated biodiesel production: a comparsion of different homogeneous catalysts system, Bioresource Technology, 92, 297-305.
36.Sendzikiene E., Makareviciene V., Janulis P., Kitrys S.(2004), Kinetics of free fatty acids esterification with methanol in the production of biodiesel fuel,European Journal of Lipid Science and Technology, 106, 831-836.
37.Lee MJ, Wu HT, Lim HM.(2000), Kinetics of catalytic esterification of acetic acid and Amyl alcohol over Dowex. Ind Eng Chem Res; 39:4094–9.
38.Su CH., Fu CC., Gomes J., Chu IM., Wu WT.(2008), A Heterogeneous Acid-Catalyzed Process for Biodiesel Production from Enzyme Hydrolyzed Fatty Acids, American Institute of Chemical Engineers (AIChE), 54, 327-336.
39.Hill, K.(2000)., Fats and oils as oleo chemical raw materials. Pure and Applied Chemistry 72(7):1255-1264.
40.G. Kafuku., M. Mbarawa. (2010), “Alkaline catalyzed biodiesel production from moringa oleifera oil with optimized production parameters”, Applied Energy, Vol. 87, pp.2561-2565.
41.Guerreiro L., Castanheiro JE., Fonseca IM., Martin-Aranda RM., Ramos AM.,Vital J.(2006), Transesterification of soybean oil over sulfonic acid functionalized polymer membranes, Catalysis Today, 118, 166-171.
42.Chiu CW., Goff MJ., Suppes GJ.(2005), Distribution of Methanol and Catalysts between Biodiesel and Glycerol Phases., American Institute of Chemical Engineers (AIChE), 51, 1274-1278.
43.Watanabe Y., Shimada Y., Sugihara A., Tominaga Y.(2001), Enzymatic conversion of waste ediable oil to biodiesel fuel in a fixed-bed bioreactor, Journal of the American Oil Chemists’ Society, 78, 703-707.
44.Znad H, Blažej M, Báleš V, and Markoš J (2004), A kinetic model for gluconic acid production by Aspergillus niger. Chem Pap 58(1): 23-8.
45.L.C. Meher., Vidya S.S. Dharmagadda., S.N. Naik. (2006), “Optimization of alkali-catalyzed transesteriWcation of Pongamia pinnata oil for production of biodiesel”, Bioresource Technology, Vol. 97, pp.1392-1397.
46.Srivastava A and Prasad R (2000), Triglycerides-based diesel fuels.Renew. Sust. Energ. Rev., 4: 111-133.
47.Guerreiro L., Castanheiro JE., Fonseca IM., Martin-Aranda RM., Ramos AM.,Vital J. (2006). "Transesterification of soybean oil over solfonic acid functionalized polymer membranes." Catalyst Today 118: 166-171.
48.Weiliang Ca., Hengwen Han., Jingchang Zhang.(2005), “Preparation of biodiesel from soybean oil using supercritical methanol and co-solvent”, Fuel, Vol. 84, pp.347-351.
49.Alcantara. R., Amores, J., and Canoira, L.(2000), Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow. Biomass bioenergy, 18:515-527.
50.Khan AK.(2002), Research into biodiesel kinetics & catalyst development,University of Queensland, Brisbane, Queensland.
51.Kusdiana D and Saka S(2001), Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel 80:693-698.
52.Bacri, J. C., R. Perzynski, et al. (1990)., IONIC FERROFLUIDS – A CROSSING OF CHEMISTRY AND PHYSICS. Journal of Magnetism and Magnetic Materials 85(1-3): 27-32.
53.Vicente G., Coteron A, and Martinez M.(1998), Application of the factorial design of experiments and response surface methodology to optimize biodiesel production. Ind. Crops. Prod. 8: 29-35.
54.Ramadhas A. S., Jayaraj S., and Muraleeharan C.(2005), Biodiesel production from high FFA rubber seed oil. Fuel, 84: 335-340.
55.Gemma, V., Mercedes, M., and Jose, A.(2007), Optimisation of integrated biodieselproducton. Part I. A study of the biodiesel purity and yield. Bioresour. Technol, 98:1274-1733.
56.Lee I.,Johnson L.A,Hammond E.G.(1995), Use of branched-chain esters to reduce the crystallization temperature if biodiesel”,JAOCS 72,1155-1160 .
57.Freedman, B., Pryde, E. H., and Mounts, T. L.(1984), Variables affectting the yields of fatty esters from transesteritied vegetable oils. J. Am. Oil Chem. Sot., 61, 1638-1643.
58.張顧懷 (2010):「流體化床產製生質柴油及其氧化安定性之研究」,高苑科技大學化工與生化工程研究所碩士論文。
59.施育昇 (2009) :「均勻系觸媒產製生質柴油最適化條件之研究」,高苑科技大學化工與生化工程研究所碩士論文。
60.蔡瑞峰 (2010) :「非均勻系離子交換樹脂觸媒生產生質柴油最適化操作條件之研究」,高苑科技大學化工與生化工程研究所碩士論文。
61.陳育智 (2008) :「生質柴油非均相催化轉酯製程之探討」,國立台灣大學生物產業機電工程研究所碩士論文。
62.李智傑 (2008):「酸性觸媒在生質柴油製程之研究」,國立成功大學化學工程研究所碩士論文。
63.陳佳偉 (2009):「固定化脂肪分解酵素應用於大豆油水解之研究」,國立成功大學化學工程研究所碩士論文。
64.陳鴻博 (2007) :「以回應曲面法探討添加陽離子界面活性劑透過溶膠-凝膠法製備矽膠之影響」,中原大學化學工程研究所碩士論文。
65.劉季樺 (2009) :「異相觸媒產製生質柴油之研究」,逢甲大學化學工程研究所碩士論文。
66.陳怡真 (2007) :「實驗設計法進行棕櫚油轉酯化生質柴油之因子設計分析及最佳化」,中原大學化學工程研究所碩士論文。
67.陳聖傑 (2008) :「以 Rhizopus oryzae 最適化生產轉酯化酶之研究」,國立雲林科技大學化學工程與材料工程研究所碩士論文。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top